重金属废水资源化利用实例分析

发布时间:2018-4-11 14:03:15

  利用相关技术对重金属废水进行处理并非重金属废水处理的最终目的,重金属废水处理要求废水中重金属含量达到相关标准后,应对重金属废水进行资源化处理,即废水的资源化处理和重金属的资源化处理。现阶段,我国在重金属废水资源化领域已取得了一系列重大研究成果且被成功运用至部分实际重金属废水处理工程当中,相关资源化技术主要包括两方面:

  1基于膜集成技术的含铜废水处理:2013年,浙江省某工程施工后产生了大量的含胶体和重金属Cu的工业废水,地方环保部门和该工程单位环境部门根据所选纳滤膜的分离特性与纳滤处理前后水样的导电率,进而对废水中含有的cu进行截留,节流范围为85.3%,相应的截留分子量的范围为756Da,在膜集成技术处理后,废水中的Cu浓度由138.2mg/L降至1.79mg/L,且废水的导电率也降至5.7us/cm,使出水水质较好地达到了生产用水要求。同时,经处理后的浓缩废水被转移至回收浓缩系统和萃取系统进行回收和萃取,最后经由电解将水中残留的cu予以回收,基本实现了该工程废水处理的闭路循环,而后该重金属废水资源化工艺被临近地区的相关工程所使用,且地区基于该工艺的含铜废水中可回收的电解铜约为100t/年,较好地实现了含铜废水的资源化处理。具体联系污水宝或参见http://www.dowater.com更多相关技术文档。

  2基于混凝沉淀与膜处理相组合的蓄电池废水处理:2014年,广东省某化工企业利用混凝沉淀与膜处理相组合的工艺对厂内蓄电池废水进行处理,通过在蓄电池废水中加入石灰、NaOH对废水的pH进行调节,并使重金属离子形成沉淀,而后利用将沉淀物同废水进行分离,在此基础上借助微滤和纳滤等膜处理技术将蓄电池废水中残留的重金属离子进一步分离。结果表明,经过混凝沉淀后,废水中的大部分重金属离子被去除,而膜处理后,废水中铅、镉的浓度分别为0.3mg/L和0.02mg/L,回收率也达到72.5%,能够基本满足工业生产和排放的标准。

相关推荐