含硝酸铵废水的处理方法

发布时间:2019-3-25 13:18:42

  申请日1986.03.28

  公开(公告)日1986.10.01

  IPC分类号C02F9/00; B01J23/38

  摘要

  本发明提供一种对含硝酸铵废水的处理方法,该方法是在由载体载带的催化剂存在下,并将废水的pH维持在约3至约11.5左右及在约100至约370℃的温度下,对废水进行湿法热分解处理。其中所用的催化剂是含有至少一种贵金属或其不溶或微溶于水的化合物作为该催化剂的活性成分。

  権利要求書

  1、一种含硝酸铵废水的处理方法,该法是在由载体载带的催化剂存在下使废水发生湿法热分解作用,所说的催化剂包含至少一种贵金属或其不溶或微溶于水的化合物作为其活性成份,废水的PH维持在大约3至约11.5范围内,热分解温度约为100至约370℃。

  2、如权利要求1所述的方法,其中所说的废水是在pH大约为5至约11的范围内,使之发生湿法热分解作用。

  3、如权利要求1所述的方法,其中所说的催化剂活性成份包含至少一种下述元素,即钌,铑、钯,饿,铱、铂和金。

  4、如权利要求1所述的方法,其中所说的催化剂活性成份包含至少一种下述元素的不溶或微溶于水的化合物,这些元素是钌、铑,钯,饿,铱,铂和金。

  5、如权利要求4所述的方法,其中所说的催化剂活性成份包含至少一种下述化合物,即二氯化钌,二氯化铂,硫化钌和硫化铑。

  6、如权利要求1所述的方法,其中所说的湿法热分解是在固定床型反应器内进行的。

  7、如权利要求1所述的方法,其中所说的湿法热分解是在流化床型反应器内进行的。

  8、如权利要求1所述的方法,其中所说的湿法热分解是在大约200至约300℃的温度下进行的。

  9、一种处理含硝酸铵废水的方法,该法包括在如下条件下使废水经受湿法热分解反应:(ⅰ)在由载体载带的催化剂存在下,该催化剂含有至少一种贵金属或其不溶或微溶于水的化合物作为它的活性成份;(ⅱ)在低于理论量的氧存在下,所说的理论量氧是指将废水中的氨,有机物和无机物质分解为N2,H2O和CO2所需的氧量;同时使废水的pH保持在约3至约11.5范围内,温度为约100至约370℃。

  10、如权利要求9所述的方法,其中所说的废水是在pH为约5至约11之间经受湿法热分解的。

  11、如权利要求9所述方法,其中所说的催化剂活性成份是至少一种下述元素,即钌,铑,钯,饿,铱、铂和金。

  12、如权利要求9所述的方法,其中所说的催化剂活性成份包含至少一种不溶或微溶于水的贵金属化合物,所说的贵金属是指钌,铑,钯,饿,铱,铂和金。

  13、如权利要求12所述的方法,其中所说的催化剂活性成份包含至少一种下述化合物,即二氯化钌,二氯化铂,硫化钌和硫化铑。

  14、如权利要求9所述的方法,其中所说的湿法热分解是在固定床型反应器内进行的。

  15、如权利要求9所述的方法,其中所说的湿法热分解是在流化床型反应器内进行的。

  16、如权利要求9所述的方法,其中所说的湿法热分解是在大约200至约300℃的温度下进行的。

  17、如权利要求9所述的方法,其中所说的含氧气体是以大约理论氧量的0.2至0.6倍的量加入的。

  18、一种含硝酸铵废水的处理方法,该法包括往废水中添加摩尔比为1

  19、如权利要求18所述的方法,其中所说的废水是在pH为约5至11左右下进行湿法热分解的。

  20、如权利要求18所述的方法,其中所说的催化剂活性成份包括至少一种如下元素,即钌,铑,钯,饿,铱,铂和金。

  21、如权利要求18所述的方法,其中所说的催化剂活性成份包括至少一种不溶或微溶于水的贵金属化合物,所说的贵金属是指钌,铑,钯,饿,铱,铂和金。

  22、如权利要求21所述的方法,其中所说的催化剂活性成份包括至少一种下述化合物,即二氯化钌,二氯化铂,硫化钌和硫化铑。

  23、如权利要求18所述的方法,其中所说的湿法热分解是在固定床型反应器内进行的。

  24、如权利要求18所述的方法,其中所说的湿法热分解是在流化床型反应器内进行的。

  25、如权利要求18所述的方法,其中所说的湿法热分解是在大约200至约300℃的温度下进行的。

  26、如权利要求18所述的方法,其中所说的含氧气体是以理论氧量的约0.2至约0.6倍左右的氧量加入的。

  27、一种处理含硝酸铵废水的方法,该法包括往废水中添加每摩尔NO-3离子不多于1摩尔的COD组份,在如下条件下进行废水的湿法热分解处理:(ⅰ)在由载体载带的催化剂存在下,该催化剂含有至少一种贵金属或其不溶或微溶于水的化合物作为催化剂的活性成份;(ⅱ)在低于理论需要量的氧存在下,所谓理论需氧量是指将废水中的氨,有机物和无机物质分解为N2,H2O和CO2所需的氧量;同时废水的pH维持在约3至约11.5,温度为约100至约370℃。

  28、如权利要求27所述的方法,其中所说的废水是在pH约为5至11左右下进行湿法热分解的。

  29、如权利要求27所述的方法,其中所说的催化剂活性成份包括至少一种如下元素,即钌,铑,钯,饿,铱,铂和金。

  30、如权利要求27所述的方法,其中所说的催化剂活性成份包括至少一种不溶或微溶于水的贵金属化合物,所说的贵金属是指钌,铑,钯,饿,铱,铂和金。

  31、如权利要求30所述的方法,其中所说的催化剂活性成份包括至少一种下述化合物,即二氯化钌,二氯化铂,硫化钌和硫化铑。

  32、如权利要求27所述的方法,其中所说的湿法热分解是在固定床型反应器内进行的。

  33、如权利要求27所述之方法,其中所说的湿法热分解是在流化床型反应器内进行的。

  34、如权利要求27所述的方法,其中所说的湿法热分解是在约200至300℃左右温度下进行的。

  35、如权利要求27所述的方法,其中含氧气体大约是以理论氧量的0.2至约0.6倍的量加入的。

  36、如权利要求27所述的方法,其中每摩尔NO-3离子的COD组份加入量是约0.1至约0.5摩尔。

  37、一种含硝酸铵废水的处理方法,该法包括往废水中添加每摩尔NO-3离子不多于1摩尔的COD组份和摩尔比为1

  38、如权利要求37所述的方法,其中所说的废水是在pH为约5至11左右下进行湿法热分解的。

  39、如权利要求37所述的方法,其中所说的催化剂活性成份包括至少一种贵金属,即钌,铑,钯,饿,铱,铂和金。

  40、如权利要求37所述的方法,其中所说的催化剂活性成份包括至少一种不溶或微溶于水的贵金属化合物,所说的贵金属是指钌,铑,钯,饿,铱,铂和金。

  41、如权利要求40所述的方法,其中所说的催化剂活性成份包括至少一种下述化合物,即二氯化钌,二氯化铂,硫化钌和硫化铑。

  42、如权利要求37所述的方法,其中所说的湿法热分解是在固定床型反应器内进行的。

  43、如权利要求37所述的方法,其中所说的湿法热分解是在流化床型反应器内进行的。

  44、如权利要求37所述的方法,其中所说的湿法热分解是在约200至300℃左右的温度下进行的。

  45、如权利要求37所述的方法,其中所说的含氧气体是以理论氧量的约0.2至约0.6倍的量加入的。

  46、如权利要求37所述的方法,其中所说的COD组份加入量是每摩尔NO-3离子约0.1至0.5摩尔的COD。

  说明书

  本发明述及含硝酸铵废水的处理方法。

  最近几年来,从水质控制的观点出发,去除废水中的含氮成份(特别是“氨态氮”)以及可用化学方法氧化的物质(下文记作“COD<化学需氧重>组份)愈加显得重要。

  我们对含氨废水的处理方法进行了长期而广泛的研究,从而提出了简易而经济上可行的含氨废水的处理方法,这些方法通常是在指定的条件下及在有特殊的催化剂存在下对废水进行湿法氧化处理(即日本特许公报19757/1984;42992/1981;42391/1982;27999/1983;33320/1982号等所公开的方法)。

  近来,由于能源工业中的核电比例日益加重,我们所面临的一个重要的技术问题就是对铀矿的前处理和用过铀燃料的后处理所产生的含NH4NO3废水加以处理。我们试图采用上述含氨废水的处理方法(下面称作“现有方法”)来处理这种含NH4NO3废水,并发现现有方法能极其有效地分解NH+4离子,但并不总能满意地有效分解NO-3离子。这一缺点估计可能是由于NH4NO3浓度过高(约达1%至10%,即10000ppm至100000ppm)而引起的。

  为了克服上述缺点,我们又进行了深入的研究,并发现在无氧或在低于理论需要量的氧存在下,对含NH4NO3的废水进行湿法热分解,而不是用现有技术采用高于理论需求量的氧进行废水湿法氧化,可使NO-3离子像NH+4离子一样,也能够有效地被分解,这里所说的 理论量氧是指分解该废水中的氨组份、有机物和无机物所需的氧。我们继续研究证明,当在低于理论需要量的氧存在下进行湿法热分解时,含NH4NO3的废水中加入摩尔比为1

  (1)含硝酸铵废水处理法,该法是在无氧而有载体所载带的催化剂存在下,保持废水的pH值约3至约11.5并在约100至约370℃的温度范围内使其发生湿法热分解,其中的催化剂含有至少一种贵金属或其不溶或微溶于水的化合物作为它的活性成份。

  (2)含硝酸铵废水处理法,该法是在下述条件下进行废水湿法热分解的:(ⅰ)在由载体所载带的催化剂存在下,该催化剂至少含有一种贵金属或其不溶或微溶于水的化合物作为它的活性成份;(ⅱ)在低于理论需要量的氧存在下,所说的理论需要量的氧是指将废水中的氨、有机物和无机物分解成N2H2O和CO2所需的氧量,同时使废水的pH值维持在约3至约11.5,湿度大约为100至约370℃。

  (3)含硝酸铵废水的处理法,该法包括往该废水中添加摩尔比为1

  (4)含硝酸铵废水的处理方法,该法包括向废水中添加与NO-3离子的摩尔比不大于1的COD组份,并对废水进行湿法热分解,其条件是:(ⅰ)在载体载带的催化剂存在下,该催化剂含有至少一种贵金属或其不溶或微溶于水的化合物作为其活性成份;(ⅱ)在低于理论需要量的氧存在下,理论需要量的氧是指将废水中的氨、有机物和无机物分解为N2,H2O和CO2所需的氧量,同时使废水的pH值维持在约3至约11.5,温度为约100至约370℃。

  (5)含硝酸铵废水的处理方法,该法包括向废水中添加每克分子NO-3离子不大于1摩尔的COD组份和添加其摩尔比为1

  在整个说明书和所附的权利要求书中,所用的关于氧的“理论量”一词都是指“将废水中所存在的氨,有机物和无机物分解为N2,H2O和CO2所需的理论氧量”,“NH+4-N”和“NO-3-N”分别是指氨态氮”和“硝态氮”。

  能用本发明之方法处理的废水包括含NH4NO3的各种废水,其NH4NO3含量最好是高达1%或更高一些。需用本发明之方法处理的废水中,可以含有机物和无机物质。当pH在约3至约11.5,最好是约5至约11实施本方法时,可获得高效率。因此,必要时,废水的pH可用氢氧化钠,碳酸钠,氢氧化钙等碱性物质来调节。

  本发明所用催化剂的活性成份可以是钌,铑,钯,饿,铱,铂和金以及这些金属的不溶于水或微溶于水的化合物。这些活性成份可以单独使用,或者其中至少两个混合使用。不溶或微溶于水的有用化合物有二氯化钌,二氯化铂,硫化钌,硫化铑等。催化剂的这些活性成份都是按常规方法由载体载带而使用的,所用的载体有二氧化钛,氧化锆,氧化铝,二氧化硅,氧化铝-二氧化硅,活性炭和多孔金属体等,多孔金属体如镍,镍-铬,镍-铬-铝,镍-铬-铁等等。载体载带活性组份的量约为0.05至约25%,约0.5至约3%更好(均以载体重量计算)。所用的催化剂可以是珠状,丸状,柱状,碎片,粒状或其他任何所要求的形状。若所用的反应柱是一种固定床,则废水的空速大约为0.5至10升/小时,最好是约1至约5升/小时(均以空柱体积计算)。固定床所用的载体上催化剂颗粒或碎片的大小一般为约3至约50毫米,最好是约5至约25毫米。在流化床的情况下,所用载带的催化剂最好是将其悬浮在废水中制成一种浆状液,其用量是能在反应器内形成一种流化床,即按所形成的悬浮液计算,其用量通常为约0.5至约20%(重量),最好为约0.5至约10%(重量)。流化床在实际运行时,最好是将载带的催化剂以悬浮于废水中的稀浆液加入反应器中,经反应而处理过的水利用沉降、离心或其他合适的方法将催化剂从中分出,将分离出的催化剂重新使用。 为便于自处理过的废水中分离出催化剂,流化床所用的载带催化剂其粒度大小最好是约0.15至约0.5毫米。

  当本发明之方法是在有低于理论需氧量的存在下实施时,可用多种气体作氧源。例如,本发明中常用的气体有空气,富氧空气,氧气,含氧废气等,这些废气中可能含有一种或几种下列杂质:如氰化氢,硫化氢,氨,氧化硫,有机硫化物,氮的氧化物,烃等。含氧气体的通入速率根据分解废水中所含的氨,有机物和无机物所需的理论量氧而变动。一般地说,气体的通入量大约是反应体系中理论氧量的0.2至0.6倍。当以含氧废气作氧源时,气体中的有害成份可与废水中所含的有害物质同时转化为无害物质。含氧气体可以从一个位置或两个或几个位置通入反应器。

  通常,反应是在约100至约370℃进行,最好是在约200至约300℃的温度下进行。反应温度愈高,NH+4离子和NO-3离子的消除效率也愈高,废水在反应器内的停留时间也愈短,然而设备投资也愈高。因此,反应温度要根据废水类型,处理要求,运行及设备费用等综合因素而确定。因此,反应所需的压力只需要在预定的温度下使废水至少能保持其液体状态。

  当含NH4NO3的废水已按摩尔比为1

  当含NH4NO3的废水中按每摩尔NO-3离子加入不大于1摩尔的COD组份进行湿法热分解反应时,反应条件与上述条件相同。废水中每摩尔NO-3的COD组份的待加量最好为约0.1至约0.5摩尔。

  当含NH4NO3的废水中加入与上述同量的COD组份和摩尔比 为1

  废水中加进的COD组份及氨的源可包括含这些物质的各种废水,如炼焦厂、煤气厂和煤液化厂所产生的煤气水,这些工厂在所用的气体净化过程中所产生的废水,脱硫过程和去氰(化物)过程所产生的废水,含油废水,淤渣活化、沉积活性淤浆过程所产生的废水,化工厂和炼油厂废水,城市下水,污水,污泥等等。这就意味着本发明之方法可以和处理含硝酸铵废水一起处理上述那些废水。

  本发明之方法能够处理含高浓度NH4NO3的废水,并能提高其处理效果,可使NH+4离子和NO-3离子的浓度明显降低。基于这种优点,本发明的方法仅借助于简单的设备,就能轻易地处理由铀矿石加工成核燃料和由用过铀燃料的后处理所产生的NH4NO3浓度为10%或更高些的废水。

  关于本发明的详细内容将通过下面的实例及比较实例加以描述。

  实例1

  在一个300毫升的不锈钢高压釜内,加入100毫升pH为10、NH4NO3浓度为10%(NH+4-N/NO-3-N=1)的废水,在250℃下热分解60分钟。给高压釜增压所用的空气中,所含的氧大约为理论量的0.01倍。在该釜内装有10克由二氧化钛颗粒所载带的钌催化剂,其粒度为5毫米,按二氧化钛重量计算,钌的量为2%。

相关推荐