申请日2016.06.12
公开(公告)日2016.09.21
IPC分类号C02F9/14
摘要
本发明公开一种三单元污水处理系统及方法,包括水解酸化装置,包括水解酸化池、第一沉淀池、第一溢水堰、及溢水管;厌氧反应器,筒体、三相分离器、及内循环装置;污泥处理装置,包括第二沉淀池、第二溢水堰、进水管、及溶氧仪,第二溢水堰通过回流管与水解酸化池连通;进水管上设置有射流孔和调节阀,其依次通过水解酸化、厌氧发酵、射流喷射处理,并将喷射后形成的亚硝酸盐回流。本发明通过设置一污泥处理装置,其通过设置一射流孔调节反应液面的溶氧量,保证反应产生亚硝酸盐,并将形成的亚硝酸盐回流至水解酸化池内,从而避免了酸化处理的污水酸性过高,提高了污水处理的整体处理效率。
权利要求书
1.一种三单元污水处理系统,其特征在于,包括,
一水解酸化装置,其包括水解酸化池、盖设于所述水解酸化池上端开口的第一沉淀池、设置于所述第一沉淀池内的第一溢水堰、及连通所述第一溢水堰和所述水解酸化池的溢水管;
一厌氧反应器,其包括一与所述水解酸化池连接的筒体、设于所述筒体顶部的三相分离器、及驱动所述筒体内混合液循环流动的内循环装置;及
一污泥处理装置,其包括第二沉淀池、设于所述第二沉淀池内的第二溢水堰、连接所述第二沉淀池和所述筒体的进水管、及一用于检测所述第二沉淀池内液面溶氧量的溶氧仪,所述第二溢水堰通过一回流管与所述水解酸化池连通;其中,所述进水管上设置有射流孔和控制所述射流孔内混合液喷射速度和喷射高度的调节阀。
2.根据权利要求1所述的三单元污水处理系统,其特征在于,所述进水管包括竖直设置于所述沉淀池内的射流管及连接所述射流管与所述筒体的连接管,所述射流孔设置于所述射流管上。
3.根据权利要求2所述的三单元污水处理系统,其特征在于,所述三相分离器包括集气罩、沉淀室、排水管、排气室和反射板,所述集气罩外缘与所述筒体顶部开口端配合连接,所述沉淀室上端同轴连接于所述集气罩下表面、下端通过多个固定柱与所述反射板连接,且所述沉淀室内壁与集气罩之间形成沉淀空间、所述沉淀室外壁与所述集气罩之间形成集气空间,所述排水管一端与所述沉淀空间连通、另一端延伸至所述筒体外并与所述进水管连接,所述排气室与所述集气空间连通。
4.根据权利要求1或2所述的三单元污水处理系统,其特征在于,所述内循环装置包括靠近筒体顶端设置的内循环进水管、靠近所述筒体底端设置的内循环出水管、驱动水流由所述内循环进水管向所述内循环出水管运动的内循环管道泵、及一控制所述内循环管道泵作间歇性驱动的控制器。
5.根据权利要求1或2所述的三单元污水处理系统,其特征在于,所述筒体内设置有一进水布水器,所述进水布水器一端靠近所述筒体底部设置、另一端穿过所述筒体侧壁并通过一提升管与所述水解酸化池连接。
6.根据权利要求2所述的三单元污水处理系统,其特征在于,所述射流孔位于所述第二沉淀池池口端面所在平面下方20~50cm。
7.根据权利要求1或2所述的三单元污水处理系统,其特征在于,所述第一沉淀池和所述第二沉淀池内分别设置有第一斜板和第二斜板,所述第一斜板和所述第二斜板分别合围形成有第一沉淀区和第二沉淀区,所述第二沉淀区呈方形且横截面由下至上逐渐增加。
8.根据权利要求3所述的三单元污水处理系统,其特征在于,所述集气罩呈伞状、沉淀室呈筒状、反射板呈锥形且所述集气罩、沉淀室、反射板同轴设置。
9.一种三单元污水处理方法,其特征在于,包括如下步骤,
(1)将污水过滤沉淀后进行水解酸化处理;
(2)将水解酸化处理后的污水进行厌氧发酵处理;
(3)将厌氧发酵处理后的含有甲烷的厌氧污泥与污水的混合物通过射流孔喷射出来,调节喷射的速度及高度使反应液面的含氧量为0~0.5mg/L;
(4)收集喷射后的固液混合物,沉淀,并将沉淀后的上清液部分加入步骤(1)的水解酸化处理工艺中。
10.根据权利要求9所述的三单元污水处理方法,其特征在于,所述步骤(3)中液面的含氧量为0.4~0.5mg/L。
说明书
三单元污水处理系统及方法
技术领域
本发明涉及污水处理技术,尤其是涉及一种三单元污水处理系统及方法。
背景技术
常规的厌氧污泥反应器有UASB、EGSB、IC等,其废水处理原理基本为,待处理的污水被尽可能均匀的引入反应器,进入反应器内的污水与颗粒状或絮状污泥接触发生反应,反应产生的部分沼气(主要为甲烷和二氧化碳)附着于污泥上,随着沼气向上运动,并撞击三相分离器实现固、液、气的三相分离。经过厌氧污泥反应器处理后的污水与污泥的混合物一般通过SBR反应器进行氨氮处理。
但是,在实际应用过程中,厌氧污泥反应器之前需要通过水解酸化处理,而水解酸化处理易导致污水酸性较高,从而抑制厌氧污泥反应器甲烷菌的生长,不利于厌氧污泥反应器中污水的处理效率的提高,继而导致整体处理效率降低。虽然可通过在水解酸化处理过程中进行pH值调节降低酸性解决,但是易导致生产成本的增加,不利于污水处理成本的降低。
发明内容
本发明的目的在于克服上述技术不足,提出一种三单元污水处理系统及方法,其可实现对污水的甲烷化、氨氮化和氧化处理,其可通过氧化处理形成的亚硝酸盐进行水解酸化前的污水进行预处理,从而避免了酸化处理的污水酸性过高。
为达到上述技术目的,本发明的技术方案一方面提供一种三单元污水处理系统,包括,
一水解酸化装置,其包括水解酸化池、盖设于所述水解酸化池上端开口的第一沉淀池、设置于所述第一沉淀池内的第一溢水堰、及连通所述第一溢水堰和所述水解酸化池的溢水管;
一厌氧反应器,其包括一与所述水解酸化池连接的筒体、设于所述筒体顶部的三相分离器、及驱动所述筒体内混合液循环流动的内循环装置;及
一污泥处理装置,其包括第二沉淀池、设于所述第二沉淀池内的第二溢水堰、连接所述第二沉淀池和所述筒体的进水管、及一用于检测所述第二沉淀池内液面溶氧量的溶氧仪,所述第二溢水堰通过一回流管与所述水解酸化池连通;其中,所述进水管上设置有射流孔和控制所述射流孔内混合液喷射速度和喷射高度的调节阀。
优选的,所述进水管包括竖直设置于所述沉淀池内的射流管及连接所述射流管与所述筒体的连接管,所述射流孔设置于所述射流管上。
优选的,所述三相分离器包括集气罩、沉淀室、排水管、排气室和反射板,所述集气罩外缘与所述筒体顶部开口端配合连接,所述沉淀室上端同轴连接于所述集气罩下表面、下端通过多个固定柱与所述反射板连接,且所述沉淀室内壁与集气罩之间形成沉淀空间、所述沉淀室外壁与所述集气罩之间形成集气空间,所述排水管一端与所述沉淀空间连通、另一端延伸至所述筒体外并与所述进水管连接,所述排气室与所述集气空间连通。
优选的,所述内循环装置包括靠近筒体顶端设置的内循环进水管、靠近所述筒体底端设置的内循环出水管、驱动水流由所述内循环进水管向所述内循环出水管运动的内循环管道泵、及一控制所述内循环管道泵作间歇性驱动的控制器。
优选的,所述筒体内设置有一进水布水器,所述进水布水器一端靠近所述筒体底部设置、另一端穿过所述筒体侧壁并通过一提升管与所述水解酸化池连接。
优选的,所述射流孔位于所述第二沉淀池池口端面所在平面下方20~50cm。
优选的,所述第一沉淀池和所述第二沉淀池内分别设置有第一斜板和第二斜板,所述第一斜板和所述第二斜板分别合围形成有第一沉淀区和第二沉淀区,所述第二沉淀区呈方形且横截面由下至上逐渐增加。
优选的,所述集气罩呈伞状、沉淀室呈筒状、反射板呈锥形且所述集气罩、沉淀室、反射板同轴设置。
本发明另一方面还提供一种三单元污水处理方法,包括如下步骤,
(1)将污水过滤沉淀后进行水解酸化处理;
(2)将水解酸化处理后的污水进行厌氧发酵处理;
(3)将厌氧发酵处理后的含有甲烷的厌氧污泥与污水的混合物通过射流孔喷射出来,调节喷射的速度及高度使反应液面的含氧量为0~0.5mg/L;
(4)收集喷射后的固液混合物,沉淀,并将沉淀后的上清液部分加入步骤(1)的水解酸化处理工艺中。
优选的,所述步骤(3)中液面的含氧量为0.4~0.5mg/L。
与现有技术相比,本发明通过设置一污泥处理装置,其通过设置一射流孔调节反应液面的溶氧量,保证反应产生亚硝酸盐,并将形成的亚硝酸盐回流至水解酸化池内,从而避免了酸化处理的污水酸性过高,提高了污水处理的整体处理效率。