申请日2014.12.05
公开(公告)日2015.04.22
IPC分类号B01J20/26; C02F1/28; B01J20/30; B01J20/28
摘要
本发明提供了一种新型水凝胶吸附剂的制备方法,属于复合材料技术领域。本发明采用自由基交联共聚法,将酸化凹凸棒(PGS)与丙烯酰胺(AM)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)共聚而得。其上大量的氨基和磺酸基增强了聚合物的比表面积和识别性能。大量实验证明,本发明制备的水凝胶吸附剂对水溶液中的孔雀石绿具有很好的吸附能力,可广泛用于工业及生活废水中孔雀石绿(MG)的净化和处理。另外,本发明制备的水凝胶吸附材料,化学稳定性好,可循环使用,且易于分离,合成成本低,对环境不造成二次污染,是一种很有潜力的MG吸附材料。
权利要求书
1.一种水凝胶复合吸附材料的制备方法,是以纯水为介质,丙烯酰胺和2-丙烯酰胺-2-甲基丙磺酸为聚合单体,酸化凹凸棒为无机添加剂,过二硫酸铵和亚硫酸氢钠为引发剂,在交联剂N, N-亚甲基双丙烯酰胺存在下,通过自由基交联共聚而得。
2.如权利要求1所述水凝胶复合吸附材料的制备方法,其特征在于:将是酸化凹凸棒、丙烯酰胺及2-丙烯酰胺-2-甲基丙磺酸充分分散于纯水中,N2保护下加入引发剂过二硫酸铵和亚硫酸氢钠,交联剂N, N-亚甲基双丙烯酰胺,于30~40℃反应4~6 h;所得产物用二次水浸泡5~7天,每天更换两次水以除去未反应的单体及杂质;取出烘干后用索氏提取器抽提12~48 h;产物经甲醇、二次水反复洗涤,干燥至恒重,即得水凝胶吸附剂。
3.如权利要求1所述水凝胶复合吸附材料的制备方法,其特征在于:聚和单体2-丙烯酰胺-2-甲基丙磺酸与丙烯酰胺的摩尔比为1:1~1:4。
4.如权利要求1所述水凝胶复合吸附材料的制备方法,其特征在于:酸化凹凸棒占聚和单体2-丙烯酰胺-2-甲基丙磺酸与丙烯酰胺总质量的0.3%~1.4%。
5.如权利要求1所述水凝胶复合吸附材料的制备方法,其特征在于:所述过硫酸铵的加入量为烯酰胺、2-丙烯酰胺-2-甲基丙磺酸及凹凸棒总质量的0.2~0.6%。
6.如权利要求1所述水凝胶复合吸附材料的制备方法,其特征在于:引发剂亚硫酸氢钠的加入量为丙烯酰胺、2-丙烯酰胺-2-甲基丙磺酸及凹凸棒总质量的0.2~0.6%。
7.如权利要求1所述水凝胶复合吸附材料的制备方法,其特征在于:所述交联剂N,N-亚甲基双丙烯酰胺(MBA)的加入量为烯酰胺、2-丙烯酰胺-2-甲基丙磺酸及凹凸棒总质量的0.5~1%。
8.如权利要求1所述水凝胶复合吸附材料的制备方法,其特征在于:上述索氏提取的溶剂采用甲醇与乙酸的混合溶剂,且甲醇与乙酸的体积比为10:1~5:1。
9.如权利要求1所述方法制备的水凝胶复合吸附材料用于吸附污水中的孔雀石绿。
说明书
一种水凝胶复合吸附材料的制备及在处理染料污水中的应用
技术领域
本发明属于复合材料技术领域,涉及一种复合材料吸附材料的制备,尤其涉及一种水凝胶复合吸附材料的制备;本发明同时涉及该水凝胶复合吸附材料在处理染料污水中的应用。
背景技术
孔雀石绿(MG),是一种有毒的三苯甲烷类化学品,既是工业染料,也是驱虫剂、杀菌剂,常用于预防与治疗各类水产动物的水霉病、鳃霉病和小瓜虫病等,功效显著。但其具有高残留、致畸、致癌、致突变等副作用,在水处理中属于难生物降解的有机污染物。目前的去除方法主要有生物降解、光降解、生物吸附、化学吸附等;经高压液相色谱法和液相色谱串联质谱法(LC-MS),固相萃取法,毛细管电泳等进行检测,这些方法具有高灵敏度,但对设备要求较高切耗时较长,需要对样品进行排除干扰和分离富集等复杂的前处理工作。本文采用紫外分光光度计对其进行检测,检测过程简单,操作方便,成本低廉,应用范围广等特点。
水凝胶 (hydrogels)是一种亲水性聚合物,具有高分子网络结构,性质柔软,能在吸附大量水情况下仍保持较好的形状。具有各种独特的性质如亲水性、弹性、溶胀收缩性和大包容性以及pH敏感性等。正是这种特性使水凝胶在实际应用中存在其可行性,在药物控制释放、生物工程、催化反应方面都有的一定应用。含有氨基和羧基的等官能团的水凝胶在不同环境能够发生可逆的离子化和去离子化过程,进而影响水凝胶的亲水性和溶胀性,在吸附水体污染物方面也有广泛的应用。
发明内容
本发明的目的是提供一种水凝胶复合吸附材料的制备方法;
本发明的另一目的是提供上述水凝胶复合吸附材料的在吸附染料工业污水中的应用。
(一)水凝胶复合吸附材料的制备
本发明水凝胶复合吸附材料的制备,是以纯水为介质,丙烯酰胺(AM)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)为聚合单体,酸化凹凸棒(PGS)为无机添加剂,过二硫酸铵(APS)和亚硫酸氢钠(SBS)为引发剂,在交联剂N, N-亚甲基双丙烯酰胺(BIS)存在下,通过自由基交联共聚而得。其具体制备工艺为:将是酸化凹凸棒、丙烯酰胺及2-丙烯酰胺-2-甲基丙磺酸充分分散于纯水中,N2保护下加入APS、SBS及 BIS,于30~40℃反应4~6 h;所得产物用二次水浸泡5~7天以除去未反应的单体及杂质,取出烘干;然后用索氏提取器抽提12~48 h;产物经甲醇、二次水反复洗涤,干燥至恒重,即得水凝胶复合吸附材料,记为PGS-AMPS-AM。
上述聚和单体2-丙烯酰胺-2-甲基丙磺酸与丙烯酰胺的摩尔比为1:1~1:4;酸化凹凸棒的量为2-丙烯酰胺-2-甲基丙磺酸与丙烯酰胺总质量的0.3%~1.4%。
所述引发剂采用过硫酸铵和亚硫酸氢钠,其中过硫酸铵、亚硫酸氢钠的加入量分别为AM、AMPS和PGS总质量的0.2~0.6%。
交联剂为N,N-亚甲基双丙烯酰胺(BIS)的加入量为AM、AMPS和PGS总质量的0.5~1%。上述索氏提取的溶剂采用甲醇与乙酸的混合溶剂,且甲醇与乙酸的体积比为10:1~5:1。
本发明采用自由基交联共聚法,将2-丙烯酰胺-2-甲基丙磺酸、丙烯酰胺与凹凸棒共聚,由于凹凸棒表面有活性较强的Si-OH基团和键合位点,在水凝胶中引入凹凸棒不仅可以改善其网络结构,提高吸附性能,而且大大降低了生产成本。
(二) 水凝胶复合吸附材料的结构和性能
下面通过红外光谱、扫描电镜、热重曲线,对本发明吸附剂PGS-AMPS-AM的结构和性能进行说明。
1、红外光谱FTIR
图1为反应物及生成物的红外光谱图,图(a)、(b)、(c)分别为AMPS、PGS、AM的红外谱图,(d)为PGS-AMPS-AM的红外光谱图。从红外谱图中可以看出,PGS-AMPS-AM接枝聚合成功。
2、扫描电镜分析SEM
图2是酸化凹凸棒和接枝聚合后的PGS-AMPS-AM的扫描电镜图谱。从图(a)中可以观察到酸化的凹凸棒呈现出有序的纳米棒状结构。图(b)显示凹凸棒表面接枝上AMPS、AM后形貌有所改变,凹凸棒纳米棒周围包覆上了AM与AMPS的共聚物,比表面积显著增加,呈现海绵状,有利于吸附孔雀石绿。
3、热重分析TGA
图3为酸化凹凸棒PGS、接枝聚合后的PGS-AMPS-AM的热重分析图。通过比较两条曲线可以看出,聚合物有较好的稳定性,可以满足吸附实验条件,在100℃以内较凹凸棒单体而言,具有较好的热稳定性。
综上所述,本发明将2-丙烯酰胺-2-甲基丙磺酸、丙烯酰胺与凹凸棒相结合制备了复合凝胶吸附剂PGS-AMPS-AM,凹凸棒的引入改善了凝胶网络结构,提高了吸附性能,该吸附剂制备工艺简单、成本低、化学稳定性好、易于分离、可循环利用。PGS-AMPS-AM复合凝胶是良好的孔雀石绿染料吸附剂,强酸条件下吸附剂再生能力好,可望作为价廉的生态型材料代替传统吸附剂用于实际染料废水的处理。
(三)水凝胶复合吸附材料对染料的吸附性能
1、对水溶液中孔雀石绿(MG)的吸附试验:取5 mg PGS-AMPS-AM中的AM:AMPS=1:1的水凝胶及凹凸棒原样吸附剂投入初始浓度分别为700 mg/L的30 mL MG溶液中25℃恒温搅拌吸附12 h后,离心分离吸附剂,用紫外分光光度法测定滤液中剩余MG浓度,计算其吸附量。发现,凹凸棒原样对孔雀石绿的吸附量为8 mg/g,而共聚物PGS-AMPS-AM对孔雀石绿的吸附量可达3547 mg/g。
2、不同比例的PGS-AMPS-AM对水溶液中MG吸附性能试验:分别准确称取5 mg PGS-AMPS-AM为1:4,1:2,1:1的水凝胶投入初始浓度分别为700 mg/L的30 mL MG溶液中25℃恒温搅拌吸附12h后,离心分离吸附剂,用紫外分光光度法测定滤液中剩余MG浓度,计算其吸附量分别为1532 mg/g,2758mg/g,3547 mg/g。
3、时间对吸附性能的影响:取700 mg/L的MG溶液30 mL,吸附剂PGS-AMPS-AM 5 mg于室温下恒温振荡不同时间,取出测定其上清液的吸光度,运用标准曲线方程计算其吸附量。结果显示,在4h时吸附量趋于平衡,此后随着时间的增加,吸附量几乎保持不变。
4、PGS-AMPS-AM对水溶液中MG、亚甲基蓝(MB)、结晶紫(MV)的吸附性能试验:将5 mgPGS-AMPS-AM吸附剂投入到的初始浓度分别为700 mg/L的30 mL MG,MB,MV溶液中,25℃恒温搅拌吸附12 h后,离心分离吸附剂,用紫外分光光度法测定滤液中剩余MG、MB、MV的吸光度,计算其吸附量。结果发现,PGS-AMPS-AM对孔雀石绿的吸附量可达3547 mg/g,而对亚甲基蓝和结晶紫的吸附量分别为1480 mg/g和1279 mg/g,可以看出,该吸附剂对孔雀石绿的吸附性能远大于其它两种染料。因此本发明的水凝胶吸附材料对染料废水中的MG具有很好的附性能及选择性,因而可用于吸附水溶液中的MG。
5、pH对PGS-AMPS-AM吸附MG性能的影响
取PGS-AMPS-AM吸附剂5 mg投入到30 mL初始浓度为700 mg/L的不同pH值的MG溶液中,25℃恒温搅拌吸附4 h,离心分离吸附剂,用紫外分光光度法测定滤液中剩余MG的浓度,并计算吸附量。结果见表1:随着溶液pH值的增大,PGS-AMPS-AM吸附剂对溶液中MG的吸附能力先增强再有所减弱。
6、吸附剂用量对MG去除率的影响:将不同质量的吸附剂投入30 mL的700 mg/L的MG溶液中,室温恒温振荡12 h,离心分离,侧其上清液的的吸光度计算其去除率。结果发现,随着吸附剂用量的增加去除率升高、吸附量降低,当吸附剂用量为10 mg时,对孔雀石绿的去除率可达97.3%。
7、循环使用性能:在吸附的最佳条件下选择吸附MG,即室温25℃,pH为4,吸附时间4 h下进一次试验,发现最大吸附量为3632 mg/g。将一次吸附后的吸附剂用3 mol/L的HCl进行洗脱,浸泡24 h,离心分离吸附剂,用二次水进行洗涤,至于烘箱中干燥至恒重,进行循环吸附。实验结果表明,二次循环吸附的吸附量可达3520 mg/g,三次循环的吸附量可达3450 mg/g。由此说明,吸附剂PGS-AMPS-AM在循环吸附方面也有较好的使用前景。
综上所述,本发明制备的水凝胶吸附材料PGS-AMPS-AM对模拟废水中的MG有很好吸附能力,可广泛用于工业及生活废水中MG的净化和处理。另外,本发明制备的PGS-AMPS-AM水凝胶吸附剂,化学稳定性好,可循环使用,且易于分离,合成成本低,对环境不造成二次污染,是一种很有潜力的MG吸附材料。