废水处理装置与处理方法

发布时间:2018-1-6 17:45:53

  申请日2017.02.21

  公开(公告)日2017.06.13

  IPC分类号C02F9/08; C02F1/72; C02F1/32; C02F101/34; C02F101/38

  摘要

  本发明公开了一种真空紫外光催化反应器、废水处理装置与处理方法,真空紫外光催化反应器可通过真空紫外光催化和化学氧化协同产生的·OH处理废水,能在常温下大幅降低废水的COD值;废水处理装置包括与废水池依次连接的混合器、主催化反应器、真空紫外光催化反应器和气液分离器,其中,所述气液分离器的气体出口连接废水回收池,液体出口连接COD在线检测系统,该COD在线检测系统将检测达标的处理废水通过回收管路与废水回收池连通,将检测不达标的处理废水通过循环管路与混合器连通再次进行处理,同时,所述混合器还与双氧水箱连接;该废水处理装置结构合理,能够较好地降解高盐、高毒、高COD废水,快速高效,无二次污染。

  权利要求书

  1.一种真空紫外光催化反应器,其特征在于:包括由内管(120)和外管(121)组成的夹套结构,其中,所述内管(120)中设置真空紫外灯,并在内管管壁上开设有有利于真空紫外灯射出高强紫外线的孔(122),同时在内外管之间的夹层中填充催化剂。

  2.一种包含权利要求1所述真空紫外光催化反应器的废水处理装置,其特征在于:包括与废水池(1)依次连接的混合器(4)、主催化反应器(9)、真空紫外光催化反应器(12)和气液分离器(14),其中,所述气液分离器(14)的气体出口连接废水回收池(18),液体出口连接COD在线检测系统(16),该COD在线检测系统(16)将检测达标的处理废水通过回收管路(20)与废水回收池(18)连通,将检测不达标的处理废水通过循环管路(21)与混合器(4)连通再次进行处理,同时,所述混合器(4)还与双氧水箱(7)连接。

  3.根据权利要求2所述的废水处理装置,其特征在于:所述双氧水箱(7)还与主催化反应器(9)连通。

  4.根据权利要求2或3所述的废水处理装置,其特征在于:所述双氧水箱(7)还与真空紫外光催化反应器(12)连通。

  5.根据权利要求2所述的废水处理装置,其特征在于:所述真空紫外光催化反应器(12)与气液分离器(14)之间设置双氧水脱除器(13)。

  6.根据权利要求2所述的废水处理装置,其特征在于:所述废水池(1)通过回收管路(20)与混合器(4)连接,并且在回收管路(20)和循环管路(21)之间设置用于废水池内废水与检测达标废水之间热量交换的换热器(3)。

  7.根据权利要求2所述的废水处理装置,其特征在于:所述废水回收池(18)之前设置尾气吸收器(17)。

  8.根据权利要求2所述的废水处理装置,其特征在于:所述混合器(4)还与碱试剂箱(5)连接。

  9.根据权利要求2所述废水处理装置的处理方法,其特征在于包括如下步骤:废水池中的废水与双氧水箱中的双氧水在混合器中混合,接着进入主催化反应器进行催化反应,再进入真空紫外光催化反应器中进行光催化和化学催化协同反应,处理后进入气液分离器,分离得到的气体进入废水回收池,液体进入COD在线检测系统,检测合格的处理废水通过回收管路进入废水回收池,检测不合格的处理废水通过循环管路进入混合器再次进行处理。

  说明书

  真空紫外光催化反应器、废水处理装置与处理方法

  技术领域

  本发明涉及一种用于处理废水的反应器,尤其涉及一种真空紫外光催化和化学催化氧化协同真空紫外光催化反应器,包含该催化反应器的废水处理装置以及处理方法,属于废水处理领域。

  背景技术

  随着工业的发展,废水已逐渐成为重要的污染源之一,尤其是医药工业废水,由于其成分复杂、有机物含量高、生物毒性大、色度深、含盐量高、可生化性很差,很难处理。医药工业包括抗生素的生产过程,有原料药生产和药物制剂生产,生产过程具有的特点是:原辅材料种类多,生产流程长、工艺复杂、副产品多,三废多(如阿奇霉素废水COD为35000-60000mg/L、BOD为10000-20000mg/L、含盐量2000-10000mg/L)。医药工业废水在工业生产中产生的废水是我国污染最严重、最难处理的工业废水之一,具有有机物及无机盐含量高,BOD5和CODcr比值低且波动大,可生化性很差,水量波动大等特点。

  当前,废水的处理方法主要有物化法和生物法。物化法主要从物理、化学的角度来处理废水,例如抗生素废水,主要采用物理吸附、化学混凝、光化学降解、电解、膜分离等方法来降低抗生素废水的COD,提高废水的可生化性,但是物化法处理抗生素废水的工艺流程复杂,资金投入量大,而且处理后的副产物较多,容易造成二次污染。而生物法主要是利用不同种类的微生物,通过好氧、厌氧或者好氧-厌氧等复合工艺来降解抗生素废水。由于抗生素对微生物具有显著的杀灭作用,且微生物对温度、pH、含盐量、含氧量等非常敏感,用微生物法直接处理高浓度制药废水效果很差,而且对生化池会造成不可逆转的破坏。因此,在进入生化池之前,需要用大量清水和生活污水对抗生素废水进行稀释,然后经过较长的时间和多级复杂工序处理后,提高抗生素废水的可生化性,才能进入生化池后续处理。

  现有的光催化反应器存在光催化功能单一、催化效率低和反应不彻底等问题。目前的废水处理装置的工艺流程复杂,降解时间长,副产物较多,容易造成二次污染。因此,亟待解决上述问题。

  发明内容

  发明目的:本发明的第一目的是提供一种能协同进行光催化和化学催化反应的真空紫外光催化反应器;本发明的第二目的是提供包含该真空紫外光催化反应器的废水处理成套装置;本发明的第三目的是提供该废水处理装置的处理方法。

  技术方案:本发明所述的真空紫外光催化反应器,包括由内管和外管组成的夹套结构,其中,内管壁为镂空结构且在内管中设置真空紫外灯,并在内外管之间的夹层中填充催化剂。该反应器利用真空紫外灯发射的高强紫外线,耦合参与化学氧化的催化剂,彻底处理废水中的有毒有害物质。

  本发明所述的废水处理装置,包括与废水池依次连接的混合器、主催化反应器、真空紫外光催化反应器和气液分离器,其中,所述气液分离器的气体出口连接废水回收池,液体出口连接COD在线检测系统,该COD在线检测系统将检测达标的处理废水通过回收管路与废水回收池连通,将检测不达标的处理废水通过循环管路与混合器连通再次进行处理,同时,所述混合器还与双氧水箱连接。

  其中,所述双氧水箱还与主催化反应器连通;进一步地,双氧水箱还可以连通真空紫外光催化反应器。主催化反应器中的催化剂和/或真空紫外光催化反应器高强紫外线,可以激发双氧水产生高活性羟基自由基,进一步降解废水。

  所述真空紫外光催化反应器与气液分离器之间设置双氧水脱除器,具体是通过管路连接在真空紫外催化反应器的出液口上,将残留的双氧水进行分解,无二次污染。

  所述废水池通过回收管路与混合器连接,并且在回收管路和循环管路之间设置用于废水池内废水与检测达标废水之间热量交换的换热器,利用反应后废水的余热加热待反应的废水,使其升温以提高后续反应的速率和效果,实现能量的循环利用。

  所述废水回收池之前设置尾气吸收器,进一步脱除废水中的有毒有害气体。

  所述混合器还与碱试剂箱连接。

  本发明所述废水处理装置的处理方法,包括如下步骤:废水池中的废水与双氧水箱中的双氧水在混合器中混合,接着进入主催化反应器进行催化反应,再进入真空紫外光催化反应器中进行光催化和化学催化协同反应,处理后进入气液分离器,分离得到的气体进入废水回收池,液体进入COD在线检测系统,检测合格的处理废水通过回收管路进入废水回收池,检测不合格的处理废水通过循环管路进入混合器再次进行处理。

  有益效果:与现有技术相比,本发明具有以下显著优点:

  (1)本发明的真空紫外光催化反应器,可通过真空紫外光催化和化学氧化协同产生的·OH处理废水,原水不需稀释,对废水pH适用范围广,能在环境温度下大幅降低废水的COD值,在较短的时间内提高废水的可生化性,并通过真空紫外光矿化除去毒性较大的小分子有机物;该反应器可单独使用,也可用于成套装置中,且后者使用效果更佳,主要能够快速降解小分子有机物。

  (2)本发明的废水处理装置结构合理,能够较好地降解高盐、高毒、高COD废水,抗冲击负荷能力强,占地少,投资省,快速高效,无二次污染;其中,所有管道和反应器均可采用耐高温玻璃棉进行保温,保温效率高,减少了热量散失,节省能耗;可采用尾气吸收器,实现有毒有害气体零排放,绿色环保;设置COD在线检测系统,水质参数实时自动测量;可以设置空气压缩机,既可以起到鼓泡搅拌作用,又可以起到管路排液放净的作用;同时设置有换热器,能够将反应中产生的热量很好的利用起来,节能降耗。

  (3)本发明废水处理装置的处理方法简单高效便捷,容易实现规模化应用。本技术具有废水处理质量稳定、成本低,不受废水盐度影响,适用范围广等特点。

相关推荐