光催化氧化技术在水处理中的应用及研究进展

发布时间:2011-1-17 10:11:16

摘要:介绍了光催化氧化的机理,就TiO2固定化制备、改性、光催化氧化在降解废水中有机污染物、无机污染物以及饮用水处理中的研究进展进行了阐述,提出了今后的发展方向。

关键词:纳米二氧化钛,光催化氧化,水处理,研究进展

光催化氧化技术是一种新兴的水处理技术。1972年,Fu- jishima和Honda[1]报道了在光电池中光辐射TiO2可持续发生水 的氧化还原反应,标志着光催化氧化水处理时代的开始。1976年, Carey等[2]在光催化降解水中污染物方面进行了开拓性的工作。 此后,光催化氧化技术得到迅速发展。光催化技术具有反应条件 温和、能耗低、操作简便、能矿化绝大多数有机物、可减少二次污 染及可以用太阳光作为反应光源等突出优点,在难降解有机物、 水体微污染等处理中具有其他传统水处理工艺所无法比拟的优 势,是一种极具发展前途的水处理技术,对太阳能的利用和环境 保护有着重大意义。

1 TiO2光催化剂的特性及光催化氧化机理

TiO2有锐钛矿型、金红石型和板钛矿型三种晶型。同样条件 下,锐钛矿型的催化活性较好。在众多光催化剂中,TiO2是目前 公认的最有效的半导体催化剂,其特点有:化学性质稳定,能有效 吸收太阳光谱中弱紫外辐射部分,氧化还原性极强,耐酸碱和光 化学腐蚀,价廉无毒。目前对光催化的机理研究尚不成熟,一般 认为光催化氧化法是以N型半导体的能带理论为基础。TiO2属 于N型半导体,其能带是不连续的,在充满电子的低能价带(VB) 和空的高能导带(CB)之间存在一个禁带,带隙能为3.2 eV,光催 化所需入射光最大波长为387.5 nm。当λ≤387.5 nm的光波辐 射照射TiO2时,处于价带的电子被激发跃迁到导带,生成高活性 电子(e-),同时在价带上产生相应的空穴(h+),从而形成具有高 度活性的电子/空穴对,并在电场作用下分离,向粒子表面迁移,既 可直接将吸附的有机物分子氧化,也可与吸附在TiO2表面的羟基 或水分子反应生成氧化性很强的活性物质氢氧自由基·OH。·OH 自由基是一种非选择性的强氧化剂,可以氧化包括生物难以降解 的各种有机物,使之彻底氧化为CO2,H2O和其他无机物。

2 TiO2固定化制备及改性研究

2.1 TiO2固定化制备

针对TiO2粉末回收困难且不能有效利用可见光等缺点,催 化剂固定化不仅是解决催化剂回收利用的有效途径,也是运用活 性组分和载体的各项功能,以改善催化剂功能的理想形式。 TiO2固定化制备方法主要有:1)粉体烧结法,此法简单易行, 光催化活性较高,但存在牢固性欠佳、分布不均等问题。2)偶联 法,这种方法将TiO2粉体与载体通过偶联剂粘合在一起,适用于 制备TiO2复合涂料。3)溶胶—凝胶法制备TiO2薄膜,这是目前 常用的一种制备方法。此法制备的薄膜不仅均匀性和结晶性较 好,而且可以通过改变溶胶—凝胶参数来控制膜的表面积和孔结 构,制得高活性的催化剂,技术简单,但多次浸渍、提拉使制备过 程历时较长。国内外研究中所应用的载体主要有硅胶、玻璃、铝 材、陶瓷、石英玻璃和光导纤维等。总之,催化剂的固定化方式 很多,但都有不足之处,解决催化剂固定化问题仍是目前研究工 作的重点。

2.2 TiO2的改性

TiO2吸收波长狭窄,对太阳光的利用率低。为扩展TiO2吸 收波长范围和提高光催化活性,对TiO2进行改性研究是十分必 要的。目前对TiO2的改性研究主要集中在以下几个方面:1)半 导体复合。通过两种不同禁带宽度的半导体复合可提高系统的 电荷分散效果,扩大TiO2的光谱响应范围。复合方式有简单的 组合、掺杂、多层结构和异相组合等。例如,复合体系CdS-TiO2[3] 中,由于CdS(Eg2.5 eV)可能被波长短于500 nm的可见光激发, 从而使得CdS-TiO2复合体系的激发波长达到可见光区。2)掺杂 金属离子。金属离子掺杂可捕获导带中电子,改变TiO2结晶度, 减少TiO2表面光生电子—空穴对的复合,提高了活性,而且还可 使TiO2的吸收波长扩展,以达到充分利用可见光的目的。Choi 等[4]系统考察了21种金属离子掺杂的TiO2纳米晶,发现在晶格 中掺杂0.5%的Fe3+,Mo5+,Ru2+,Re2+或Rh2+,增加了光催化 活性,其中Fe3+掺杂的TiO2纳米晶光催化活性增加最明显。3) 表面光敏化。将一些光活性化合物,如叶绿素、玫瑰红等吸附于 半导体表面,从而扩大激发波长范围,增加光催化反应效率。

3 光催化氧化技术在水处理中的应用

3.1 废水处理

光催化反应的强氧化性能是其在有机污染控制方面的技术 优势所在。1)含卤衍生物。有机氯化物是水中最主要的一类污 染物,毒性大,分布广,其治理是水污染处理的一个重要课题。光 催化过程在处理有机氯化物方面显示出了较好的应用前景,目前 关于这方面的研究已有许多报道,研究认为卤代烃、卤代脂肪酸 等均可完全降解,氯酚、氯苯等经过一系列中间产物生成CO2和 HCl。2)染料废水。印染废水进入水体会造成严重的环境污染, 其中有的还含有苯环、胺基、偶基团等致癌物质[5]。3)农药废 水。农药废水中含有机磷农药,三氯苯氧乙酸,DDVP,DTHP, DDT,三硝基甲烷等,毒性大,难降解,易生物积累。利用TiO2 光催化去除农药虽然不能使所有的污染物最终达到完全矿化,但 不会产生毒性更高的中间产物,这是其他方法无法相比的。4) TiO2光催化对含油废水、含表面活性剂的废水、垃圾填埋场渗滤 液的处理等均具有良好的效果,关于这方面的研究报道[6,7]也很 多。除有机物外,许多无机物在TiO2表面也具有光化学活性,目 前的研究较多集中在含铬废水[8]、含氰废水的处理以及对贵金属 的回收,同时也可以查看中国污水处理工程网更多关于光催化氧化的技术文档。

3.2 饮用水处理

3.2.1 处理微量有机污染物

目前地面水普遍受到污染,而常规的给水技术难以达到去除 溶解性有机物的效果,由此造成饮用水中总是存在一定量的有机 污染物。据报道,世界范围内饮用水中,已出现765种有机化合 物,其中117种是属于致癌的或有关致癌的物质[10]。此外,在饮 用水消毒尤其是氯消毒过程中往往产生具有毒性和“三致”效应 的消毒副产物,如三卤甲烷(THMs)、卤乙酸(HAAs)和亚氯酸盐 等[11],对人体健康造成严重危害。光催化降解饮用水中的有机 污染物较之降解废水中的有机物其反应机制并没有本质的差异 所不同的是饮用水中的有机污染物浓度比较低。研究表明,TiO 光催化对这些微量有机污染物以及消毒副产物的前体物质如腐 殖酸、酚类等的去除都有着显著的效果。如Bischof用溶胶—凝 胶法研制的TiO2光催化反应装置成功的去除了水中挥发性有机 物,而且可以完全将其矿化成为H2O,CO2[12]。王福平等[13]用合 成的具有层状结构的TiO2纤维作为光催化剂,在O3/TiO2/UV 体系处理含有腐殖质的饮用水,1 h后腐殖质去除率达97.1%。

3.2.2 灭活细菌

饮用水微生物污染会导致大面积的传染性疾病的流行,TiO 光催化技术处理微生物污染的优势在于该技术不仅能杀灭饮用 水中的细菌、病毒并将其分解为CO2和H2O,同时能降解细菌死 亡后释放出的有毒组分内毒素,从而避免了采用银系、氯系无机 杀菌剂处理带来的副作用。杨亚丽等[14]研究了根据二氧化钛光 化学反应原理研制的饮水消毒桶对饮用水中微生物的杀灭效果 结果表明对大肠杆菌和f2噬菌体的杀灭率达100%。汪恂等[15 还比较了铁掺杂纳米TiO2膜和纯纳米TiO2膜的灭菌效果。试 验表明,两者均有较强的杀菌能力,但Fe3+/TiO2膜的杀菌作用 优于纯TiO2膜,对大肠杆菌杀菌率从87.4%提高至95.8%,对 金黄葡萄球菌杀菌率从79.4%提高至88.3%。

此外,TiO2光催化对水体中的藻类有同样的灭活作用,而且 对藻类所释放出的毒素(如微禳藻毒素)有降解作用[16],这是其 他任何一种灭菌方式所不具有的功能。

4 今后的发展方向

光催化氧化技术具有高效、节能、清洁无毒等突出优点,是一项具有广泛应用前景的新型水污染处理技术。然而作为近30年发展起来的新的研究领域,光催化降解现在还基本上停留在实验室水平,实际应用很少。因此无论是在光催化机理的研究方面还是在工业实际应用中都需要进一步的深入研究,主要表现在以 下几个方面:1)制备高效率的催化剂,进一步完善催化剂的改性技术,提高催化剂的催化活性。2)选择合适的载体,研究催化剂固定技术,制备负载型催化剂,使其易于回收,重复使用。3)光催化反应机理的研究缺乏中间产物及活性物质的鉴定,仍停留在设想与推测阶段,进一步深入研究光催化反应机理,掌握有机物降解规律,对光催化技术工业实用化意义重大。4)光催化技术与其他技术耦合,利用技术的协同作用来获取最佳的处理效果,开拓更广阔的应用前景。

参考文献:

[1] Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5338):38-45.

[2] Carey J H,Lawrence J,Tosine H M.Photodechlorination o PCB’s in the presence of titanium dioxide in aqueous suspen- sion[J].Bull Environ Contam,Toxicol,1976,16(5):697-701.

[3] KANG Man-gu,HAN HYEA-Eun.Enhanced Photod ecompo- sition of 4-Chlorophenol in Aqueous Solution by Deposition o CdS on TiO2[J].Photochem Photobiol:A,1999,125(3):119- 125.

[4] Choi Wk,TERMIN A,HOFFMANN M R.The role of metal- ion dopants in quantum sized TiO2:correlation between photo reactivity charge carrier recombination dynamics [J]. JPhys chem,1994,98(51):13669-13679.

[5] 朱雷,宋宏娇.TiO2光催化氧化技术在水处理中的应用 [J].国外建材科技,2006,27(3):92-94.

[6] 张海燕,王宝辉,陈颖.光催化氧化处理含油污水的研究 [J].化工进展,2003,22(1):67-70.

[7] 杨运平,唐金晶,方芳,等.UV/TiO2/Fenton光催化氧化 垃圾渗滤液的研究[J].中国给水排水,2006,22(7):34-37.

[8] 刘淼,董德明,张白羽.光催化法处理电镀含铬(Ⅵ)废液 [J].吉林大学自然科学学报,1998(2):99-101.

[9] 曹广秀,李贯良,陈淑敏.纳米TiO2在水处理中的研究进展 [J].工业水处理,2003,23(9):20-22.

[10] 王占生,刘文君.微污染水源饮用水处理[M].北京:中国 建筑工业出版社,1999.

[11] 梁好,盛选军,刘传胜.饮用水安全保障技术[M].北京: 化学工业出版社,2006.

[12] 阎惠珍,樊荣涛.光催化在饮用水消毒中的应用[J].环境与健康,2002,19(2):153-154.

[13] 王福平,孙德智,王俊辉.用纤维TiO2作光催化剂降解饮用水中腐殖质[J].高技术通讯,1998,8(12):21-24.

[14] 杨亚丽,刘步升.光化学杀菌搪瓷制品的毒性实验研究[J].中国公共卫生,1999,15(3):191-192.

[15] 汪恂,龚文琪.铁掺杂纳米TiO2膜的制备与光催化灭菌作用[J].武汉理工大学学报,2007,29(7):50-53.

[16] Jarkko Rapala,Kirsti Lahti,Rasanenb Leena A,et al. Endo- toxins associated with cyanobacteria and their removal during drinking water treatment[J]. Water Research, 2002 (36): 2627-2635. 来源:中国水质网 作者: 熊玮 汪恂

相关推荐