污泥处理方法对比

发布时间:2019-12-25 8:52:14

卫生填埋
这种处置方法简单、易行、成本低,污泥又不需要高度脱水,适应性强。但是污泥填埋也存在一些问题,尤指填埋渗滤液和气体的形成。渗滤液是一种被严重污染的液体,如果填埋场选址或运行不当会污染地下水环境。填埋场产生的气体主要是甲烷,若不采取适当措施会引起爆炸和燃烧。

土地利用
污泥土地直接利用因投资少、能耗低、运行费用低、有机部分可转化成土壤改良剂成分等优点,被认为是最有发展潜力的一种处置方式,科学合理的土地利用,可减少污泥带来的负面效应。林地和市政绿化的利用因不易造成食物链的污染而成为污泥土地利用的有效方式。污泥用于严重扰动的土地(如矿场土地、森林采伐场、垃圾填埋场、地表严重破坏区等需要复垦的土地)的修复与重建,减少了污泥对人类生活的潜在威胁,既处置了污泥又恢复了生态环境。

焚烧
湿污泥干化后再直接焚烧应用得较为普遍,没有经过干化的污泥直接进行焚烧不仅十分困难,而且在能耗上也是极不经济的。

以焚烧为核心的污泥处理方法是最彻底的污泥处理方法之一,它能使有机物全部碳化,杀死病原体,可最大限度地减少污泥体积;但是其缺点在于处理设施投资大,处理费用高,设备维护成本高,而且产生强致癌物质二恶英。

污泥干燥
污泥干燥是应用人工热源以工业化设备对污泥进行深度脱水的处理方法,尽管污泥干燥的直接结果是污泥含水率的下降(脱水),但与机械脱水相比,其应用目的与效果均有很大的不同。

污泥机械脱水(也包括污泥浓缩),其应用的目的以减少污泥处理的体积为主(污泥浓缩和机械脱水通常均可使污泥体积减少4倍左右),但脱水污泥饼除了含水率和相关的物理性质,如流动性与原状污泥有差异外,其化学、生物等方面性质并不因脱水而产生变化。

污泥干燥则由于提高水分蒸发强度的要求,使用人工热源,其操作温度(对污泥颗粒而言)通常大于100℃,干燥对污泥的处理效应,不仅是深度脱水,还具有热处理的效应;加之,污泥干燥处理的产物,其含水率可控制在20%以下,即达到抑制污泥中的微生物活动的水平,因此污泥干燥处理可同时改变污泥的物理、化学和生物特性。

新技术
随着环保力度的加强和人们对已有污泥处理处置技术局限性的进一步认识,世界各国都在投入重金研发新技术,争取找到更经济、更合理的污泥处理方案。

免费处理
该技术创新采用污泥洗涤工艺,首先洗出污泥中有机物质,分离无机物质污泥土,再将有机污泥浓缩进行高温厌氧消化处理。沉淀污泥经过洗涤洗出污泥中一半固体无机污泥土,减少了一半生物处理量,节省工程投资和处理费用;单独处理有机污泥,去除了无机污泥土在反应器中的沉淀,减少了设备磨损和反应器的维护;沉淀污泥经过洗涤洗出污泥中大部分容易沉淀的重金属和无机污泥土,提高了有机肥的品质;洗涤出的污泥土还可生产路面彩砖、透水砖。其他创新工艺:超高温厌氧消化、多级厌氧消化、沼渣漂浮等,污泥生物处理速度提高了几倍和沼气产量提高20%以上。

沉淀污泥生物处理系统,工程设计创新采用地埋式、紧密型、多级消化反应器设计,几个独立的厌氧消化反应器你中有我我中有你浑然一体,节省建筑材料,采用混凝土结构造价低廉。前国内外现有的厌氧消化反应器普遍采用地上式结构,地上式结构能使配备设备便于维护和有利沼渣排放预防沼渣沉淀。该生物处理系统工程设计很好地解决了配套设备的维护和沼渣沉淀,系统配备设备少,只需要几台水泵,就是水泵坏了更换一台用不完20分钟,保证设备检修不停产;沉淀污泥经过洗涤去除了容易沉淀的无机污泥土,有机污泥经吹浮系统作用全部漂浮不会沉淀。地埋式厌氧消化反应器不仅投资少、不占用土地,而且还能防地震、防雷击和使用寿命长、减少消化系统的热量损失。

污泥发酵有机肥
传统污泥处理方法有3种:焚烧、填埋和资源化利用。国外多采用焚烧工艺,但投资巨大,易造成大气污染;国内多采用填埋,但需要占用大量的土地,同时会造成环境的二次污染;国内上海等大中城市土地再生资源很少,难以长期采用此方式。陈立侨介绍说,用微生物处理污泥前景广阔。经污水处理厂现场试验和实际应用,每处理1吨污泥可获得150元左右的经济效益。上海市每年排放污泥约140万吨,如果有20%的污泥用微生物好氧发酵处理,直接经济效益约为4200万元。此外,利用微生物好氧发酵,还能消除污泥的恶臭,有效控制污泥的二次污染,环境效益同样显著。

将污泥发酵成有机肥,如再加入部分牛粪等,就会发酵成优质的有机肥,具体操作方法如下:

1、加菌。1公斤金宝贝肥料发酵剂可发酵4吨左右污泥+牛粪。需按重量比加30-50%左右的牛粪,或秸秆粉、蘑菇渣、花生壳粉、或稻壳、锯末等有机物料以便调节通气性。其中如果加入的是稻壳、锯末,因其纤维素木质素较高,应延长发酵时间。菌种稀释:每公斤发酵剂加5-10公斤米糠(或麸皮、玉米粉等替代物)拌匀稀释后再均匀撒入物料堆,使用效果会更佳。

2、建堆。备料后边撒菌边建堆,堆高与体积不能太矮太小,要求:堆高1.5-2米,宽2米,长度2-4米

3、拌匀通气。金宝贝肥料发酵剂是需要好(耗)氧发酵,故应加大供氧措施,做到拌匀、勤翻、通气为宜。否则会导致厌氧发酵而产生臭味,影响效果。

4、水分。发酵物料的水分应控制在60~65%。水分判断:手紧抓一把物料,指缝见水印但不滴水,落地即散为宜。水少发酵慢,水多通气差,还会导致“腐败菌”工作而产生臭味。

5、温度。启动温度应在15℃以上较好(四季可作业,不受季节影响,冬天尽量在室内或大棚内发酵),发酵升温控制在70-75℃以下为宜。

6、完成。第2-3天温度达65℃以上时应翻倒,一般一周内可发酵完成,物料呈黑褐色,温度开始降至常温,表明发酵完成。如锯末、木屑、稻壳类辅料过多时,应延长发酵时间,待充分腐熟。

发酵好的有机肥,肥效好,使用安全方便,抗病促长,还可培肥地力等。

石灰投加技术
脱水后的污泥进入料斗,料斗中加入石灰和氨基璜酸,石灰投量为湿泥量的10%一15%,氨基璜酸的投量约为石灰投量的1%。由于氨基璜酸在反应过程中产生氨气,增强了整个工艺的杀菌效果,降低了反应温度。污泥、生石灰和氨基璜酸在料斗中搅拌后,由双螺旋进料机推入柱塞泵进料口,通过柱塞泵送入反应器,在70℃下停留30min,输出的产品可达到美国EPAPART503CLASSA标准。反应后的污泥泵送至料仓,密封容器中产生的气体经洗涤塔处理后排放。

该工艺的特点:
pH>12,延续时间长,杀菌彻底;高pH使大部分金属离子沉淀,降低了其可溶性和活跃程度;污泥的含固率可提高至30%;去除了污泥中的臭气,系统全密封,无环境污染;系统全自动,操作维护简单:加入少量氨基璜酸,减少了石灰用量和反应时间,降低了运行成本。

污泥碳化技术
所谓污泥碳化,就是通过一定的手段,使污泥中的水分释放出来,同时又最大限度地保留污泥中的碳值,使最终产物中的碳含量大幅提高的过程(SludgeCarbonizationo在世界范围内,污泥碳化主要分为3种。

(1)高温碳化。碳化时不加压,温度为649—982℃。先将污泥干化至含水率约30%,然后进入碳化炉高温碳化造粒。碳化颗粒可以作为低级燃料使用,其热值约为8360—12540kJ/kg(日本或美国)。该技术可以实现污泥的减量化和资源化,但由于其技术复杂,运行成本高,产品中的热值含量低,当前尚未有大规模地应用,最大规模的为30删湿污泥。

(2)中温碳化。碳化时不加压,温度为426—537℃。先将污泥干化至含水率约90%,然后进入碳化炉分解。工艺中产生油、反应水(蒸汽冷凝水)、沼气(未冷凝的空气)和固体碳化物。另外,该技术是在干化后对污泥实行碳化,其经济效益不明显,除澳洲一家处理厂外,尚无其他潜在的用户。

(3)低温碳化。碳化前无需干化,碳化时加压至6—8MPa,碳化温度为315℃,碳化后的污泥成液态,脱水后的含水率50%以下,经干化造粒后可作为低级燃料使用,其热值约为15048~20482kJ/kg(美国)。该技术通过加温加压使得污泥中的生物质全部裂解,仅通过机械方法即可将污泥中75%的水分脱除,极大地节省了运行中的能源消耗。污泥全部裂解保证了污泥的彻底稳定。污泥碳化过程中保留了绝大部分污泥中热值,为裂解后的能源再利用创造了条件14t。

(4)污泥水解热干化技术。污泥水热干化技术通过将污泥加热,在一定温度和压力下使污泥中的粘性有机物水解,破坏污泥的胶体结构,可以同时改善脱水性能和厌氧消化性能。随水热反应温度和压力的增加,颗粒碰撞增大,颗粒间的碰撞导致了胶体结构的破坏,使束缚水和固体颗粒分离。经过水热处理的污泥在不添加絮凝剂的情况下机械脱水的含水率大幅度降低。污泥的水解宏观上表现为挥发性悬浮固体浓度减少和COD、BOD以及氨氮等浓度增加。水热干化技术采用浆化反应器,通过闪蒸乏汽返混预热浆化、蒸汽与机械协同搅拌,提高了系统的处理效率;在水热反应器中,采用蒸汽逆向流直接混合加热的方式,强化了传质传热过程,可以避免局部过热结焦碳化:在连续闪蒸反应器中,实现了系统能量的有效回收。

相关推荐