易酸化废水(物)厌氧消化产甲烷的方法

发布时间:2019-3-2 10:51:27

  申请日2018.10.11

  公开(公告)日2019.01.11

  IPC分类号C12P5/02; C02F3/28

  摘要

  一种易酸化废水(物)厌氧消化产甲烷的方法,它包括如下步骤:(1)单独使用易酸化废水直接作为发酵底物加入完全混合式厌氧消化反应器中;(2)将接种物加入至完全混合式厌氧消化反应器中;(3)将颗粒活性炭投加至完全混合式厌氧消化反应器中;(4)进行厌氧消化反应,在反应进行之前,需向反应器中通入氮气以保证体系内无氧气存在;然后在转速为100r/min,温度为30‑50℃的条件下进行反应。反应进行过程中,不需要调节pH值,控制厌氧消化的时间为5‑20天。以食品精深加工产业、净菜加工及餐饮行业产生的易酸化废水(物)为消化底物,通过投加颗粒活性炭,实现了易酸化废水(物)的产甲烷化。

  权利要求书

  1.一种易酸化废水厌氧消化产甲烷的方法,其特征是它包括如下步骤:

  (1)将易酸化废水直接作为发酵底物加入完全混合式厌氧消化反应器中;所述易酸化废水包括淀粉废水、葡萄糖废水、蜜糖废水中一种或几种的混合物;控制化学需氧量浓度范围为3000-10000mg/L;

  (2)将接种物加入至完全混合式厌氧消化反应器中;所采用的接种物为污水厂厌氧消化池的厌氧污泥;接种物接种量按照接种污泥挥发性固体含量与底物COD含量(0.5-1):1进行接种;

  (3)将颗粒活性炭投加至完全混合式厌氧消化反应器中;颗粒活性炭的投加量为20-60g/L;

  (4)进行厌氧消化反应,在反应进行之前,需向反应器中通入氮气以保证体系内无氧气存在;然后在转速为100r/min,温度为30-50℃的条件下进行反应;

  反应进行过程中,不需要调节pH值,控制厌氧消化的时间为5-20天。

  2.根据权利要求1所述的易酸化废水厌氧消化产甲烷的方法,其特征是所述颗粒活性炭为由植物硬壳精炼而成的黑色柱状颗粒物,底面积为1.0 mm2,柱高为2-10mm。

  3.一种易酸化废物厌氧消化产甲烷的方法,其特征是它包括如下步骤:

  (1)单独使用易酸化废物直接作为发酵底物加入完全混合式厌氧消化反应器中;所述易酸化废物包括果蔬废弃物或者厨余垃圾,用破碎机粉碎成粒径为0.5-1.0cm的颗粒;控制总悬浮固体含量为1%-5%;

  (2)将接种物加入至完全混合式厌氧消化反应器中;所采用的接种物为污水厂厌氧消化池的厌氧污泥;接种物与底物的VS比例为(0.5-1):1,

  (3)将颗粒活性炭投加至完全混合式厌氧消化反应器中;投加量可以为2-8g/g-TSS;

  (4)进行厌氧消化反应,在反应进行之前,需向反应器中通入氮气以保证体系内无氧气存在;然后在转速为100r/min,温度为30-50℃的条件下进行反应;

  反应进行过程中,不需要调节pH值,控制厌氧消化的时间为5-20天。

  4.根据权利要求3所述的易酸化废物厌氧消化产甲烷的方法,其特征是所述颗粒活性炭为由植物硬壳精炼而成的黑色柱状颗粒物,底面积为1.0 mm2,柱高为2-10mm。

  说明书

  易酸化废水(物)厌氧消化产甲烷的方法

  技术领域

  本发明属于环境保护及有机废弃物的处理、处置与资源化利用技术领域,涉及一种利用活性炭来实现易酸化废水(物)厌氧消化产甲烷的方法。

  技术背景

  农产品精深加工产业的发展导致了以淀粉、葡萄糖、糖蜜为主的高含糖废水的大量产生,而净菜加工及餐饮行业的兴起则导致了果蔬废弃物及厨余垃圾的大量产生。这些废水(物)有机物含量高,易生物降解,适合采用厌氧的方法进行处理并回收甲烷等能源物质。然而由于上述废水(物)具有碳氮比高、易酸化等特点,如采用完全混合式厌氧反应器(CSTR)进行厌氧消化,会在短时间内迅速酸化,产生大量的有机酸,导致系统pH值过低,从而对产甲烷微生物产生毒性,导致厌氧消化产甲烷的失败。尽管针对易腐性废弃物可以采用两相厌氧消化技术,将产酸过程与产甲烷过程置于两个反应器中分别进行,以避免易腐性废弃物产生的有机酸对产甲烷微生物的毒性抑制作用。但该工艺需要与其他高含氮(污泥、牛粪等)物质联合发酵,或者在产酸相中投加石灰等碱性物质来调节发酵液pH值。而采用新型厌氧处理反应器(UASB、EGSB以及IC等)进行处理,则需要依赖处理性能良好的厌氧颗粒污泥以及设计合理的三相分离器,存在基建投资费用高昂,操作运行复杂等缺点。基于上述问题,人们一直在寻求一种廉价可行的方法,希望能够直接利用易酸化废水(物)作为完全混合式厌氧反应器的发酵底物,来实现厌氧消化产甲烷,从而实现易酸化废水(物)的处理、处置与资源化利用。

  目前已有研究人员提出通过投加活性炭能够强化某些底物厌氧发酵产甲烷。CN104762332A公开了一种提高蓝藻或秸秆厌氧产甲烷效率的方法,使用电气石、活性炭、石墨作为添加剂,提高了以蓝藻或秸秆为发酵底物厌氧消化产甲烷的效率和产量。CN107117788A公开了强化剩余污泥产甲烷的方法,通过投加活性炭促进了污水处理厂剩余污泥厌氧消化产甲烷。上述专利虽提出利用活性炭能够促进厌氧发酵产甲烷,但其发酵底物为蓝藻、秸秆或活性污泥,上述发酵底物为不易酸化物质,在不添加活性炭的前提下也能在CSTR反应器中顺利产生甲烷。CN107522375A公开了一种零价铁和活性炭强化剩余污泥厌氧消化产甲烷的方法,通过同时添加活性炭与零价铁促进了剩余污泥厌氧消化产甲烷,该方法存在添加剂种类过多,成本昂贵等弊端,且发酵底物为剩余污泥,为不易酸化物质。

  然而,针对易酸化废水(物),通过单纯添加活性炭克服其作为完全混合式厌氧反应器的发酵底物会因酸化速度过快而导致产甲烷失败的缺陷,从而实现其顺利产甲烷的研究尚未见报道。

  发明内容

  为了给农产品精深加工、净菜加工以及餐饮行业中所产生的易酸化废水(物)提供一种简便、可行的厌氧消化产甲烷的方法,本发明提供了一种利用颗粒活性炭实现易酸化废水(物)在完全混合式厌氧消化反应器中进行厌氧消化产甲烷的方法。

  本发明的目的通过以下技术方案实现:一种易酸化废水厌氧消化产甲烷的方法,它包括如下步骤:(1)单独使用易酸化废水直接作为发酵底物加入完全混合式厌氧消化反应器中;所述易酸化废水包括淀粉废水、葡萄糖废水、蜜糖废水中一种或几种的混合物;控制化学需氧量(COD)浓度范围为3000-10000mg/L;

  (2)将接种物加入至完全混合式厌氧消化反应器中;所采用的接种物为污水厂厌氧消化池的厌氧污泥(非颗粒污泥);接种物接种量按照接种污泥挥发性固体含量(VS)与底物COD含量(0.5-1):1进行接种;

  (3)将颗粒活性炭投加至完全混合式厌氧消化反应器中;颗粒活性炭的投加量为20-60g/L;

  (4)进行厌氧消化反应,在反应进行之前,需向反应器中通入氮气以保证体系内无氧气存在;然后在转速为100r/min,温度为30-50℃的条件下进行反应。反应进行过程中,不需要调节pH值,控制厌氧消化的时间为5-20天。

  本发明的具体特点还有,所述颗粒活性炭为由植物硬壳精炼而成,特征为黑色柱状颗粒物,底面积为1.0 mm2,柱高为2-10mm。

  一种易酸化废物厌氧消化产甲烷的方法,它包括如下步骤:(1)单独使用易酸化废物直接作为发酵底物加入完全混合式厌氧消化反应器中;所述易酸化废物包括果蔬废弃物或者厨余垃圾,用破碎机粉碎成粒径为0.5-1.0cm的颗粒;控制总悬浮固体(TSS)含量为1%-5%;

  (2)将接种物加入至完全混合式厌氧消化反应器中;所采用的接种物为污水厂厌氧消化池的厌氧污泥(非颗粒污泥);接种物与底物的VS比例为(0.5-1):1,

  (3)将颗粒活性炭投加至完全混合式厌氧消化反应器中;投加量可以为2-8g/g-TSS;

  (4)进行厌氧消化反应,在反应进行之前,需向反应器中通入氮气以保证体系内无氧气存在。然后在转速为100r/min,温度为30-50℃的条件下进行反应。反应进行过程中,不需要调节pH值,控制厌氧消化的时间为5-20天。

  本发明的具体特点还有,所述颗粒活性炭为由植物硬壳精炼而成,特征为黑色柱状颗粒物,底面积为1.0 mm2,柱高为2-10mm。

  本发明的有益效果如下:(1)本方法中的颗粒活性炭具有发达的孔隙结构及良好的吸附性能,在完全混合式厌氧消化体系中能够吸附发酵液中对产甲烷微生物产生不利影响的杂质,更为重要的是,颗粒活性炭能够使易酸化废水(物)体系的pH值由酸性(pH<4.5)向中性转变(pH 7.0左右),有效的消除了酸性环境对产甲烷微生物的抑制作用,实现易酸化废水(物)在完全混合式厌氧消化反应器中厌氧消化产甲烷。(2)投加颗粒活性炭后,不需要人为调控厌氧消化体系的pH值,即可消除有机酸对产甲烷微生物的活性抑制作用。(3)投加的颗粒活性炭具有较好的机械强度,能够回收再生后反复使用,较常规投加碱石灰等调控pH的方法相比,成本消耗更少。无需采用两相厌氧发酵、UASB、EGSB、IC等第二、三代厌氧工艺,实现了单纯以易酸化废水(物)作为底物进行完全混合式厌氧消化产甲烷,工艺简单,运行方便,具有较好的工程应用价值。

  具体实施方式

  下面结合具体实施例对本发明进行详细说明。

  实施例1:一种易酸化废水厌氧消化产甲烷的方法,它包括如下步骤:将易酸化废水(淀粉废水、葡萄糖废水、糖蜜废水中的一种或几种混合物)置于有效容积为0.8L的CSTR反应器中作为消化底物,易酸化废水COD浓度为3000mg/L,将取自济南市污水厂厌氧消化池的厌氧污泥接种至反应器中,接种物接种量按照接种污泥挥发性固体含量(VS)与底物COD含量0.5:1进行接种,向反应器内部投加由植物硬壳精炼而成的柱状颗粒活性炭,颗粒活性炭的底面积为1.0mm2,柱高为2-10mm,投加量为5 g/L,然后用氮气排出体系中的氧气后,迅速密封反应器,在转速为100r/min,温度为37±2℃的条件下反应5天,用铝箔集气袋收集气体并测定气体体积和组分,同时测定体系液相的pH值。

  发酵结束后,测定的累积甲烷产量为10 mL/g-COD,液相pH为5.2±0.1。

  实施例2:一种易酸化废水厌氧消化产甲烷的方法,它包括如下步骤:将易酸化废水(淀粉废水、葡萄糖废水、糖蜜废水中的一种或几种混合物)置于有效容积为0.8L的CSTR反应器中作为消化底物,易酸化废水COD浓度为3000mg/L,将取自济南市污水厂厌氧消化池的厌氧污泥接种至反应器中,接种物接种量按照接种污泥挥发性固体含量(VS)与底物COD含量0.5:1进行接种,向反应器内部投加由植物硬壳精炼而成的柱状颗粒活性炭,颗粒活性炭的底面积为1.0mm2,柱高为2-10mm,投加量为20g/L,然后用氮气排出体系中的氧气后,迅速密封反应器,在转速为100r/min,温度为37±2℃的条件下反应5天,用铝箔集气袋收集气体并测定气体体积和组分,同时测定体系液相的pH值。

  发酵结束后,测定的累积甲烷产量为150 mL/g-COD,液相pH为6.8±0.3。

  实施例3:一种易酸化废水厌氧消化产甲烷的方法,它包括如下步骤:将易酸化废水(淀粉废水、葡萄糖废水、糖蜜废水中的一种或几种混合物)置于有效容积0.8L的CSTR反应器中作为消化底物,易酸化废水COD浓度为5000mg/L,将取自污水厂厌氧消化池的厌氧污泥接种至反应器中,接种物接种量按照接种污泥VS含量与底物COD含量0.7:1进行接种,向反应器内部投加由植物硬壳精炼而成的柱状颗粒活性炭,颗粒活性炭的底面积为1.0mm2,柱高为2-10mm,投加量为40 g/L,然后用氮气排出体系中的氧气后,迅速密封反应器,在转速为100r/min,温度为37±2℃的条件下反应8天,用铝箔集气袋收集气体并测定气体体积和组分,同时测定体系液相的pH值。

  发酵结束后,测定的累积甲烷产量为162 mL/g-COD,液相pH为7.2±0.2。

  实施例4:一种易酸化废水厌氧消化产甲烷的方法,它包括如下步骤:将易酸化废水(淀粉废水、葡萄糖废水、糖蜜废水中的一种或几种混合物)置于有效容积为0.8L的CSTR反应器中作为消化底物,易酸化废水COD浓度为10000mg/L, 将取自污水厂厌氧消化池的厌氧污泥接种至反应器中,接种物接种量按照接种污泥VS含量与底物COD含量1:1进行接种,向反应器内部投加由植物硬壳精炼而成的柱状颗粒活性炭,颗粒活性炭的底面积为1.0mm2,柱高为2-10mm,投加量为60 g/L,然后用氮气排出体系中的氧气后,迅速密封反应器,在转速为100r/min,温度为37±2℃的条件下反应10天,用铝箔集气袋收集气体并测定气体体积和组分,同时测定体系液相的pH值。

  发酵结束后,测定的累积甲烷产量为179 mL/g-COD,液相pH为7.4±0.3。

  实施例5:一种易酸化废水厌氧消化产甲烷的方法,它包括如下步骤:将易酸化废水(淀粉废水、葡萄糖废水、糖蜜废水中的一种或几种混合物)置于有效容积为0.8L的CSTR反应器中作为消化底物,易酸化废水COD浓度为10000mg/L, 将取自污水厂厌氧消化池的厌氧污泥接种至反应器中,接种物接种量按照接种污泥VS含量与底物COD含量1:1进行接种,向反应器内部投加由植物硬壳精炼而成的柱状颗粒活性炭,颗粒活性炭的底面积为1.0mm2,柱高为2-10mm,投加量为100 g/L,然后用氮气排出体系中的氧气后,迅速密封反应器,在转速为100r/min,温度为37±2℃的条件下反应10天,用铝箔集气袋收集气体并测定气体体积和组分,同时测定体系液相pH值。

  发酵结束后,测定的累积甲烷产量为183 mL/g-COD,液相pH为8.1±0.2。

  实施例6:一种易酸化废物厌氧消化产甲烷的方法,它包括如下步骤:将果蔬废弃物与厨余垃圾等易酸化废物(主要包括苹果、土豆、甘蓝、大米、馒头等)首先用破碎机粉碎成粒径为0.5-1.0cm的颗粒,易酸化废物的TS为38-46%,VS/TS为72-85%。用自来水将混合的易酸化废物调节为TSS含量为1%的消化底物,置于有效容积为0.8L的CSRT反应器内,将取自厌氧消化池的厌氧污泥接种至反应器中,接种物与底物的VS比例为0.5:1,向反应器内部投加由植物硬壳精炼而成的柱状颗粒活性炭,颗粒活性炭的底面积为1.0mm2,柱高为2-10mm,投加量为0.5g/g-TSS,接种后用氮气排出体系中的氧气后,迅速密封反应器,在转速为100r/min,温度为37±2℃的条件下进行反应12天,用铝箔集气袋收集气体并测定气体体积和组分,同时测定体系液相pH值。

  发酵结束后,测定的累积甲烷产量为89 mL/g-VS,液相pH为5.9±0.2。

  实施例7:一种易酸化废物厌氧消化产甲烷的方法,它包括如下步骤:将果蔬废弃物与厨余垃圾等易酸化废物(主要包括苹果、土豆、甘蓝、大米、馒头等)首先用破碎机粉碎成粒径为0.5-1.0cm的颗粒,易酸化废物的TS为38-46%,VS/TS为72-85%。用自来水将混合的易酸化废物调节为TSS含量为1%的消化底物,置于有效容积为0.8L的CSRT反应器内,将取自厌氧消化池的厌氧污泥接种至反应器中,接种物与底物的VS比例为0.5:1,向反应器内部投加由植物硬壳精炼而成的柱状颗粒活性炭,颗粒活性炭的底面积为1.0mm2,柱高为2-10mm,投加量为2.0 g/g-TSS,接种后用氮气排出体系中的氧气后,迅速密封反应器,在转速为100r/min,温度为37±2℃的条件下进行反应12天,用铝箔集气袋收集气体并测定气体体积和组分,同时测定体系液相pH值。

  发酵结束后,测定的累积甲烷产量为193 mL/g-VS,液相pH为6.9±0.2。

  实施例8:一种易酸化废物厌氧消化产甲烷的方法,它包括如下步骤:将果蔬废弃物与厨余垃圾等易酸化废物(主要包括苹果、土豆、甘蓝、大米、馒头等)首先用破碎机粉碎成粒径为0.5-1.0cm的颗粒,易酸化废物的TS为38-46%,VS/TS为72-85%。用自来水将混合的易酸化废物调节为TSS含量为3%的消化底物,置于有效容积为0.8L的CSRT反应器内,将取自厌氧消化池的厌氧污泥接种至反应器中,接种物与底物的VS比例为0.8:1,向反应器内部投加由植物硬壳精炼而成的柱状颗粒活性炭,颗粒活性炭的底面积为1.0mm2,柱高为2-10mm,投加量为4.0g/g-TSS,接种后用氮气排出体系中的氧气后,迅速密封反应器,在转速为100r/min,温度为37±2℃的条件下进行反应15天,用铝箔集气袋收集气体并测定气体体积和组分,同时测定体系液相的pH值。

  发酵结束后,测定的累积甲烷产量为263 mL/g-VS,液相pH为7.3±0.2。

  实施例9:一种易酸化废物厌氧消化产甲烷的方法,它包括如下步骤:将果蔬废弃物与厨余垃圾等易酸化废物(主要包括苹果、土豆、甘蓝、大米、馒头等)首先用破碎机粉碎成粒径为0.5-1.0cm的颗粒,易酸化废物的TS为38-46%,VS/TS为72-85%。用自来水将混合的易酸化废物调节为TSS含量为5%的消化底物,置于有效容积为0.8L的CSRT反应器内,将取自厌氧消化池的厌氧污泥接种至反应器中,接种物与底物的VS比例为1:1,向反应器内部投加由植物硬壳精炼而成的柱状颗粒活性炭,颗粒活性炭的底面积为1.0mm2,柱高为2-10mm,投加量为8g/g-TSS,接种后用氮气排出体系中的氧气后,迅速密封反应器,在转速为100r/min,温度为37±2℃的条件下进行反应18天,用铝箔集气袋收集气体并测定气体体积和组分,同时测定体系液相的pH值。

  发酵结束后,测定的累积甲烷产量为286 mL/g-VS,液相pH为7.4±0.2。

  实施例10:一种易酸化废物厌氧消化产甲烷的方法,它包括如下步骤:将果蔬废弃物与厨余垃圾等易酸化废物(主要包括苹果、土豆、甘蓝、大米、馒头等)首先用破碎机粉碎成粒径为0.5-1.0cm的颗粒,易酸化废物的TS为38-46%,VS/TS为72-85%。用自来水将混合的易酸化废物调节为TSS含量为5%的消化底物,置于有效容积为0.8L的CSRT反应器内,将取自厌氧消化池的厌氧污泥接种至反应器中,接种物与底物的VS比例为1:1,向反应器内部投加由植物硬壳精炼而成的柱状颗粒活性炭,颗粒活性炭的底面积为1.0mm2,柱高为2-10mm,投加量为12g/g-TSS,接种后用氮气排出体系中的氧气后,迅速密封反应器,在转速为100r/min,温度为37±2℃的条件下进行反应18天,用铝箔集气袋收集气体并测定气体体积和组分,同时测定体系液相的pH值。

  发酵结束后,测定的累积甲烷产量为292 mL/g-VS,液相pH为8.5±0.2。

相关推荐