工业生产废水的处理方法

发布时间:2018-6-8 21:09:25

  申请日2013.10.11

  公开(公告)日2015.04.29

  IPC分类号C02F1/28; C02F3/12

  摘要

  一种工业生产废水的处理方法,包括步骤:向废水水体中投入粉末活性炭,废水水体中粉末活性碳的加入量为10~30mg/L;②进行活性污泥法处理。本发明效果十分明显,显著降低运行成本,活性炭与生化处理相结合的方法使得粉末活性炭可以自行再生,减少了再生装置。有本发明提供的技术方案对石化废水进行处理,COD去除率最高可达83.32%,氨氮去除率最高可达95.94%。

  权利要求书

  1.一种工业生产废水的处理方法,其特征在于,包括步骤:

  ①向废水水体中投入粉末活性炭,废水水体中粉末活性碳的加入量为10~30mg/L;

  ②进行活性污泥法处理。

  2.根据权利要求1所述的一种工业生产废水的处理方法,其特征在于,所述的活性污 泥法处理依次包括曝气工段与沉淀工段:

  所述的曝气工段是指含有粉末活性炭的废水水体与活性污泥在曝气池中混合、曝气充 氧得到混合液,污泥负荷控制为0.05~0.10kgBOD5/(kgMLVSS·d),溶解氧控制为0.5~ 3.5mg/L,停留时间控制为6~10hr,

  所述的沉淀工段是指混合液经沉淀池澄清,上清液位处理的最终出流,沉降的含炭污 泥部分进行回流,并排除部分含炭污泥作为剩余污泥进行处理。

  3.根据权利要求1或2所述的一种工业生产废水的处理方法,其特征在于所述粉末活 性炭的粒度为325目/吋>97%。

  4.根据权利要求3所述的一种工业生产废水的处理方法,其特征在于所述粉末活性炭 的亚甲基兰吸附为130ml/g,pH为5.0-7.5,含水率为0~10%。

  5.根据权利要求1所述的一种废工业生产废水的处理方法,其特征在于废水水体中粉 末活性炭加入量最好为15~28mg/l。

  说明书

  一种工业生产废水的处理方法

  技术领域

  本发明涉及工业废水处理技术领域,特别涉及一种利用低剂量粉末活性炭对工业生产 废水的处理方法。

  背景技术

  上世纪七十年代以来,美国和世界各国对工业废水提出了BPT(Best Practical Treatment)、BCT(Best Conventional Treatment)和BAT或BATEA(Best available Treatment or Best Available Treatment Economically Achievable)的概念。BPT和BCT水平是保证其一 般性污染物的去除,而BAT则已发展为包括对特定化学污染物的去除。

  为了改善工业废水处理的现状和提高对特定污染物的去除,现有技术中,通过向曝气 池直接投加粉末活性炭的工艺受到了广泛关注。美国和欧洲的不少大型联合企业、高等院 校和一些研究机构,都相继进行了大量的试验和中试规模的研究以及若干的生产性试验。 粉末活性炭废水处理工艺,其粉末活性炭(PAC)投加量较大,为100~2000毫克/升,活 性炭需湿式空气氧化或多膛炉再生,已广泛应用于化工、印染、农药等较难生物处理的废 水处理,获得较好的环境效益和社会效益。但其缺点是:粉末活性炭价格较高,且投入量 大,需再生装置,从而使得废水处理成本较高。

  发明内容

  为克服上述现有技术的不足,本发明提供一种工业生产废水的处理方法,将粉末活性炭 处理工艺与活性污泥法联合使用,该工艺中采用低剂量粉末活性炭废水处理技术,所要解 决的问题是减少粉末活性炭的加入量,在达到相同废水处理效果的前提下,降低运行成本, 弥补现有技术存在的缺陷。

  以下是本发明的技术方案:

  一种工业生产废水的处理方法,包括如下步骤:

  ①向废水水体中投入粉末活性炭,废水水体中粉末活性碳的加入量为10~30mg/L;

  ②进行活性污泥法处理。

  上述粉末活性炭粒度为325目/吋>97%,亚甲基兰吸附为130ml/g,pH为5.0-7.5,含 水率为0~10%

  上述水体中粉末活性炭加入量最好为15~28mg/l;

  上述活性污泥处理单元一次包括一个曝气工段与沉淀工段,含有粉末活性炭的污水先 于曝气工段中与活性污泥均匀混合,污泥负荷控制为0.05~0.10kgBOD5/(kgMLVSS·d), 曝气工段中曝气充氧,溶解氧控制为0.5~3.5mg/L,污水于曝气工段中的停留时间控制为 6~10hr,随后于沉淀工段中沉降的含炭污泥部分进行回流,并排除部分含炭污泥作为剩 余污泥进行处理。

  本发明是在活性污泥法曝气池前投加粉末活性炭,使粉末活性炭与废水同时进入曝气 池,在池内与活性污泥一起充分地混合和曝气,曝气池出流的混合液经沉淀池澄清,上清 液即为处理的最终出流。沉淀池中沉降的含炭污泥部分进行回流,并排除部分含炭污泥作 为剩余污泥进行处置。发明人经大量试验研究发现,当活性炭粉末投入到曝气池后,与池 内的悬浮生物体结合,形成黑色的活性炭粉末污泥,改善了有机物的去除效果。这种作用 并非单纯是由活性炭粉末的吸附作用所能完成的,而是由活性炭粉末与微生物两者结合共 同作用的结果。这种共同作用,归纳起来包括生物降解作用的加强、活性炭粉末的生物再 生作用和活性炭粉末对代谢最终产物的吸附三个相互影响而又有区别的方面所组成的。

  生物降解作用的增强主要是指活性炭粉末的投加提高了活性污泥系统的有机物去除能 力。曝气池内混合液与投加的活性炭粉末充分混合和接触,由于活性炭粉末强大的吸附作 用所产生的中间结果是:提高了活性炭粉末表面的有机物浓度和氧浓度;延长了微生物与 有机物的接触时间;增加了反应器内的生物质量浓度;吸附非絮凝细菌,改变了微生物的 种群关系。同时,由于若干游离细菌在活性炭粉末表面和空隙中获得良好的生长场所,避 免了动物微生物的吞噬危险,又逐步适应外界环境的变化冲击,而驯化成能降解难降解物 质的特定菌族。不少文献还特别强调,活性炭粉末对有毒有害物质吸附而对微生物生产所 起的保护作用。上述这些由投加活性炭粉末产生的影响,都无疑有利于生物降解作用的加 强。

  活性炭粉末的生物再生作用实质上指活性炭粉末吸附的有机物被生物利用而逐步降解 的这一过程。也就是,吸附了有机物质的活性炭粉末的表面,在生物处理过程中获得更新, 使其重新恢复吸附能力。活性炭粉末表面吸附的有机物可以由解吸和直接由细菌同化或酶 的作用所去除。从氧吸收试验和反复投料试验的结果表明,可逆的吸附基质(如酚)是可 以从活性炭粉末表面去除的,然而更复杂的基质其生物再生程度将受到某种限制。有研究 者提出,某些复杂有机物的吸附是一种不可逆的吸附,而生物再生是由吸附可逆性所控制。 以酚为基质的研究结果表示,在活性炭粉末的吸附和液相之间并没有取得平衡,同一研究 中的解吸试验又表明,生物再生的控制机理是液相低浓度的酚解吸,而并不是细菌对吸附 酚的直接作用。因而,投加活性炭粉末的主要优点是在于活性炭粉末对可吸附的有机物冲 击负荷具有减幅和储备作用。

  由此可见,本发明积极效果十分明显,在污水进入生化处理前,加入活性炭粉末取得 了对活性污泥处理具有促进的功效,相对于单纯的生化处理或活性炭吸附处理,本发明的 优点在于:运行成本显著降低,活性炭与生化处理相结合的方法使得粉末活性炭可以自行 再生,减少了再生装置。有本发明提供的技术方案对石化废水进行处理,COD去除率最高 可达83.32%,氨氮去除率最高可达95.94%。

  具体实施方式

  下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明 而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术 人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限 定的范围。

  【实施例1~10】

  一种工业生产废水的处理方法,包括步骤:

  ①向废水水体中投入粉末活性炭,废水水体中粉末活性碳的加入量见表1,粉末活性 炭的粒度为325目/吋>97%,粉末活性炭的亚甲基兰吸附为130ml/g,pH为5.0-7.5,含水 率为0~10%,

  ②进行活性污泥法处理,包括曝气工段与沉淀工段:

  所述的曝气工段是指含有粉末活性炭的废水水体与活性污泥在曝气池中混合、曝气充 氧得到混合液,污泥负荷控制为0.05~0.10kgBOD5/(kgMLVSS·d),溶解氧控制为0.5~3.5 毫克/升,停留时间控制为8.3小时,

  所述的沉淀工段是指混合液经沉淀池澄清,上清液位处理的最终出流,沉降的含炭污 泥部分进行回流,并排除部分含炭污泥作为剩余污泥进行处理。

  在实施例中,CODcr采用GB11914-89测定,NH3-N采用GB7479-87进行测定,CODcr去除率定义式与NH3-N去除率定义式分别为:

  各实施例污水为石油化工综合污水。进水水质为:

  COD:243mg/L,氨氮:25.1mg/L,PH值6~9

  采用粉末活性炭与活性污泥法组合工艺,运行工艺条件为:

  溶解氧:0.5~3.5毫克/升

  污泥浓度:2.7~4.4克/升

  水力停留时间:8.3小时

  温度:15~35℃

相关推荐