鲁奇炉煤气化废水处理方法

发布时间:2018-4-17 14:12:39

  申请日2015.04.14

  公开(公告)日2015.07.29

  IPC分类号C02F9/14

  摘要

  本发明属于废水处理技术领域,公开了一种鲁奇炉煤气化废水处理方法。其主要技术特征为:该方法包括物化处理除油、生物降解处理、活性炭催化臭氧化处理和BAF生化深度处理,其中生物降解处理包括在EC厌氧反应器中生物降解处理、无动力生物强化反应池中进行生物降解处理和在MBR膜池中进行泥水分离。通过上述主要处理工段,EC厌氧反应器的出水外回流和内回流可稀释硫酸盐、氰化物、硫化物、多元酚等有毒有害物质的浓度, 能承受较大的有机负荷;无动力生物强化反应和MBR组合,提高反应池内污泥浓度的同时,去掉了内回流泵,减少了运行费用;富含氧化锌活性炭催化臭氧化,有机物的去除效果好,并提高可生化性,同时也降低了BAF的有机负荷,提高BAF有机物的去除率。

  权利要求书

  1.鲁奇炉煤气化废水处理方法,其特征在于:该方法包括下列步骤:

  第一步,物化处理除油

  将废水经调节池后,进入氮气气浮沉淀池,在氮气气浮沉淀池中除油;

  第二步,生物降解处理

  第(一)步,在EC厌氧反应器中生物降解处理

  经过物化处理后的水,用蒸汽升温至33℃-37℃,在EC厌氧反应器中进行生物降解处理;

  第(二)步,无动力生物强化反应池中进行生物降解处理

  将在EC厌氧反应器中处理后的水加入无动力生物强化反应池进行生物降解处理;

  第(三)步在MBR膜池中进行泥水分离

  将在无动力生物强化反应池中处理后的水加入MBR膜池中,提高污泥浓度,同时进行泥水分离,污泥回流至无动力生物强化反应池前端;

  第三步,活性炭催化臭氧化处理

  将在MBR膜池中进行泥水分离后的水,进行富含氧化锌活性炭催化臭氧化处理;

  第四步,BAF生化深度处理

  将活性炭催化臭氧化处理后的水进行BAF生化深度处理。

  2.根据权利要求1所述的鲁奇炉煤气化废水处理方法,其特征在于:在所述第一步物化处理除油步骤中,PAC投加20——30ppm,PAM投加0.5——1 ppm。

  3.根据权利要求1所述的鲁奇炉煤气化废水处理方法,其特征在于:在所述第(一)步,在EC厌氧反应器中生物降解处理步骤中,所述EC厌氧反应器的外回流比:1-5,内回流比:1-4,COD容积负荷:1.5-3.5kgCOD/m3.d,甲烷气产率:0.15-0.3L/gCOD,操作温度30-35℃。

  4.根据权利要求1所述的鲁奇炉煤气化废水处理方法,其特征在于:在所述第(二)步,无动力生物强化反应池中进行生物降解处理步骤中,所述无动力生物强化反应池是由缺氧——好氧——缺氧——好氧——缺氧——生物载体好氧组成,最后一级好氧区内的生物载体填充率为20%-40%,生物载体负荷:1-3g COD/m2·d。

  5.根据权利要求1所述的鲁奇炉煤气化废水处理方法,其特征在于:在所述第三步,活性炭催化臭氧化处理步骤中,所述富含氧化锌活性炭催化臭氧化处理的催化剂使用活性炭作为载体,将氧化锌和活性炭混合烧结制成的高效催化剂,催化剂填充率为12%-30%,臭氧投加量:2-3kgO3/kgCOD 。

  说明书

  鲁奇炉煤气化废水处理方法

  技术领域

  本发明属于煤化工废水处理技术领域,具体的讲涉及鲁奇炉煤气化废水处理的方法。

  背景技术

  鲁奇炉煤气化废水中多元酚经过萃取后,含量可仍高达400 mg/L 以上,COD为3000-5000 mg/L。所以鲁奇炉煤气化废水中的污染物浓度高、成分复杂,含有焦油、芳烃、氨氮、硫化物、氰化物等多种污染物,是煤化工废水中最复杂,最难处理的废水。

  煤化工废水中多元酚、氨、硫化物及氰化物对生化系统危害大,同时对吡啶、吲哚和喹啉等一些难降解有机物处理效果较差,采用常规生化处理后,COD值难以达到一级排放标准,并且色度、氨氮含量也超标。目前,煤化工废水中常用的方法是厌氧和好氧组合工艺。但由于进水有毒有害物质含量高,使得厌氧UASB处理效率降低,COD去除率只有10%左右。相当于水解酸化的作用。同时,常规泥水分离的二沉池,出水悬浮物较高,进入深度处理后还需要混凝沉淀,再进行臭氧+生化处理。但目前采用的臭氧提高生化性和COD的去除上效果不好,导致后续生化负荷较高,处理效果差。

  专利号为201420228002.1、201410187662.4、201210225300.0、201120162855.6的专利公开了采用水解酸化、厌氧、好氧的处理方法,但在大唐克期项目的操作实践证明,由于水中的硫化物、多元酚、氰化物较多,所以水解酸化和厌氧效果不佳,厌氧COD的去除率只有11%。专利号201310220988.8的专利公开了采用四级生物载体氧化池通过短程硝化反硝化反应去除有机物、总氮,该工艺在实际工程中短程硝化反硝化的条件很难控制。专利号201010121645.2的专利公开了,厌氧、缺氧、多级好氧的活性载体的方法。但要将活性载体回流到厌氧区,不但能耗较大,并且,由于厌氧和好氧的污泥性状差别较大,好氧区的内回流液回到缺氧池才能发生反硝化反应,直接回流到厌氧池,会带进大量溶解氧,去除效率也会大幅度降低。

  综上所述,鲁奇炉煤气化废水处理方法,主要困难在于,首先,废水中存在多元酚、氨、硫化物及氰化物等多种有毒有害的物质,对生化系统危害大。所以水解酸化和厌氧效果不佳。另外单独臭氧氧化处理效果不好,后续BAF生化处理效果不好。

  发明内容

  本发明解决的技术问题就是提供一种处理效率高、设备投资少、能耗低的优点,有利于节能环保的鲁奇炉煤气化废水处理方法。

  为解决上述技术问题,本发明提出的技术方案为:

  该方法包括下列步骤:

  第一步,物化处理除油

  将废水经调节池后,进入氮气气浮沉淀池,在氮气气浮沉淀池中除油;

  第二步,生物降解处理

  第(一)步,在EC厌氧反应器中生物降解处理

  经过物化处理后的水,用蒸汽升温至33℃-37℃,在EC厌氧反应器中进行生物降解处理;

  第(二)步,无动力生物强化反应池中进行生物降解处理

  将在EC厌氧反应器中处理后的水加入无动力生物强化反应池进行生物降解处理;

  第(三)步在MBR膜池中进行泥水分离

  将在无动力生物强化反应池中处理后的水加入MBR膜池中,提高污泥浓度,同时进行泥水分离,污泥回流至无动力生物强化反应池前端;

  第三步,活性炭催化臭氧化处理

  将在MBR膜池中进行泥水分离后的水,进行富含氧化锌活性炭催化臭氧化处理;

  第四步,BAF生化深度处理

  将活性炭催化臭氧化处理后的水进行BAF生化深度处理。

  其附加技术特征为:

  在所述第一步物化处理除油步骤中,PAC投加20——30ppm,PAM投加0.5——1 ppm;

  在所述第(一)步,在EC厌氧反应器中生物降解处理步骤中,所述EC厌氧反应器的外回流比:1-5,内回流比:1-4,COD容积负荷:1.5-3.5kgCOD/m3.d,甲烷气产率:0.15-0.3L/gCOD,操作温度30-35℃;

  在所述第(二)步,无动力生物强化反应池中进行生物降解处理步骤中,所述无动力生物强化反应池是由缺氧——好氧——缺氧——好氧——缺氧——生物载体好氧组成,最后一级好氧区内的生物载体填充率为20%-40%,生物载体负荷:1-3g COD/m2·d;

  在所述第三步,活性炭催化臭氧化处理步骤中,所述富含氧化锌活性炭催化臭氧化处理的催化剂使用活性炭作为载体,将氧化锌和活性炭混合烧结制成的高效催化剂,催化剂填充率为12%-30%。臭氧投加量:2-3kgO3/kgCOD。

  本发明提供的鲁奇炉煤气化废水处理方法,同现有技术相比较具有以下特点:其一,EC厌氧反应器的出水外回流和内回流可稀释硫酸盐、氰化物、硫化物、多元酚等有毒有害物质的浓度, 能承受较大的有机负荷;其二、采用无动力生物强化反应和MBR组合,提高反应池内污泥浓度的同时,去掉了内回流泵,减少了运行费用;其三,采用富含氧化锌活性炭催化臭氧化,有机物的去除效果好,并提高可生化性,同时也降低了BAF的有机负荷,提高BAF有机物的去除率。

相关推荐