一体化污水生物脱氮除磷技术

发布时间:2018-4-3 13:48:17

  申请日2017.11.08

  公开(公告)日2018.02.16

  IPC分类号C02F3/30; C02F101/10; C02F101/16; C02F101/30

  摘要

  一体化污水生物脱氮除磷装置。有壳体(1),外竖向板(2)位于壳体内与壳体壁之间构成的泥水分离区(4)与出水口(1d)连通;内竖向板(3)位于壳体内,其一侧的水流上升通道(5)的上下端分别与其另一侧的水流下降通道(6)上下部相通,泥水分离区的进口与水流下降通道的中下部相通;内竖向板下方的污泥聚集区(7)与壳体内腔底壁的进水口(1a)和排泥口(1b)相通;射流曝气装置(8)中的污泥泵(8a)与位于水流上升通道(5)中下部的曝气器(8b)由管件(8c)连通,污泥泵进口与污泥聚集区相通,所述管件上的射流器(8d)连接设有控制阀(8f)的进气管(8e)下端。具有提高处理效果和运行稳定的特点。

  摘要附图

 

  权利要求书

  1.一体化污水生物脱氮除磷装置,包括竖向筒体的壳体(1),其特征是:

  所述壳体(1)内腔内设有外竖向板(2)和内竖向板(3);

  所述外竖向板(2)与所述壳体壁之间构成位于所述壳体中上部的泥水分离区(4),泥水分离区(4)上部与出水口(1d)连通;

  所述内竖向板(3)将所述壳体(1)内腔分割为两个腔室,内竖向板(3)一侧的腔室为水流上升通道(5),另一侧为水流下降通道(6),所述水流上升通道(5)的上下端分别与水流下降通道(6)的上下部相通,即在所述壳体(1)内构成水流循环通道,所述位于壳体中上部的泥水分离区(4)的进口(4a)与水流下降通道(6)的中下部相通;

  所述内竖向板(3)下端的下方即壳体(1)内腔底部设有污泥聚集区(7);

  所述壳体(1)内腔底壁上设有进水口(1a)和排泥口(1b),进水口(1a)和排泥口(1b)分别与所述污泥聚集区(7)相通;

  设有射流曝气装置(8),射流曝气装置(8)包括污泥泵(8a)和位于所述内竖向板(3)一侧的水流上升通道(5)中下部的曝气器(8b),所述污泥泵(8a)的出口与所述曝气器(8b)的入口由管件(8c)连通,污泥泵(8a)的泥水进口与所述污泥聚集区(7)连通,所述管件(8c)上设有射流器(8d),射流器(8d)上的空气进口连接进气管(8e)的下端,进气管(8e)上部设有可调节进入空气量的控制阀(8f)。

  2.按照权利要求1所述的一体化污水生物脱氮除磷装置,其特征是:所述射流曝气装置(8)中的曝气器(8b)位于所述内竖向板(3)一侧的水流上升通道(5)中下部,即在所述壳体(1)内的水流循环通道内构成作用于污水的、且首尾相接的厌氧区、缺氧区和好氧区,所述污泥聚集区(7)位于所述的厌氧区内。

  3.按照权利要求1所述的一体化污水生物脱氮除磷装置,其特征是:所述壳体(1)的下部为下锥体结构,所述污泥聚集区(7)即位于壳体(1)下部下锥体结构内腔内的厌氧区区域内,所述进水口(1a)和排泥口(1b)即位于壳体(1)下部下锥体结构内腔的底壁上。

  4.按照权利要求1所述的一体化污水生物脱氮除磷装置,其特征是:所述壳体(1)上部设有集水堰(1c),集水堰(1c)与泥水分离区(4)上部相通,集水堰(1c)上有所述的出水口(1d),即泥水分离区(4)上部通过集水堰(1c)与所述的出水口(1d)连通。

  5.按照权利要求1所述的一体化污水生物脱氮除磷装置,其特征是:所述进口(4a)位于所述泥水分离区(4)的下端,进口(4a)的下方设置由上下两斜板板端相连接的构件(10),下斜板向上斜置,上斜板向下斜置,所述上、下斜板的外端与所述壳体的内壁连接,所述上、下两斜板内端连接后的内侧顶点凸出于所述的进口(4a)且位于进口(4a)下方,向上斜置的下斜板可避免其下方缺氧区反硝化反应生成的氮气从水中析出形成的气泡进入泥水分离区(4)内。

  6.按照权利要求1所述的一体化污水生物脱氮除磷装置,其特征是:所述内竖向板(3)下端为朝向外竖向板(2)方向的斜板式结构(9)。

  7.按照权利要求1所述的一体化污水生物脱氮除磷装置,其特征是:所述射流曝气装置(8)中的污泥泵(8a)位于所述壳体(1)外部,所述污泥泵(8a)的泥水进口通过污泥管(8g)与所述污泥聚集区(7)连通。

  8.按照权利要求1所述的一体化污水生物脱氮除磷装置,其特征是:所述射流曝气装置(8)中的污泥泵(8a)位于所述壳体(1)内腔底部的污泥聚集区(7)内,所述污泥泵(8a)为潜水污泥泵,所述潜水污泥泵的泥水进口直接与所述污泥聚集区(7)相通。

  9.按照权利要求1-8的任一一种所述的一体化污水生物脱氮除磷装置,其特征是:竖向筒体的壳体(1)为方形状竖向筒体结构或圆形状竖向筒体结构。

  说明书

  一体化污水生物脱氮除磷装置

  技术领域

  本发明涉及污水生物处理技术领域,具体为一种一体化污水生物脱氮除磷装置。

  背景技术

  污水生物处理指利用微生物的代谢作用将污水中的有机物、氮、磷、SS等污染物去除,使污水得到净化。实现污水生物脱氮除磷的必要条件是创造厌氧、缺氧和好氧的环境。

  公布号CN104150589A、申请号201410421119.6的文献所公开了一种“一体化无梯度活性污泥污水处理装置”,其结构包括为竖向筒体的壳体,所述壳体内腔内设有外层竖向筒体和内层竖向筒体,外层竖向筒体(即所谓的“三相分离器”)位于壳体内腔上部,与所述壳体壁之间构成环状泥水分离区,环状泥水分离区上部设有排水口;所述内层竖向筒体(即所谓的“提升筒”)的内腔为水流上升通道,内层竖向筒体壁外侧的腔室为水流向下通道,内层竖向筒体的上、下筒口分别与所述水流向下通道的上、下部相通,而构成所述壳体内的水流循环通道;所述外层竖向筒体与壳体壁之间的环状泥水分离区与所述水流向下通道中下部相通;所述壳体的竖向壁中部设置污水进口,壳体竖向壁的中下部(即污水进口下方)设置污泥出口,所述内层竖向筒体内腔的下端设置空气扩散器,通过空气管线与设在壳体外部的空气泵连通。该处理装置利用空气泵提供的空气通过扩散器释放,向污水充氧以及形成提升效果使污水在壳体内的水流循环通道内循环流动,实现污水净化。其不足是:1)由于空气扩散器位于竖向内层筒体内腔的下端,且进水口和污泥出口均设于壳体的竖向壁上(壳体下锥段的上方),其一,进水口和污泥出口均与水流向下的环形通道相通,作业中,所进入的污水和将排出的污泥即与水流向下通道内流动的水流在该区域处于动态的混合状态,即无明显的高浓度污泥聚集区,污水中的污染物难以获得高浓度污泥的吸附作用及吸附效果;其二,污泥出口排放的污泥浓度低,不利于后续污泥的处理;其三,进水口和污泥出口设于壳体中部与中下部的竖向壁上,其壳体内腔底部区域存在污泥沉积和板结现象,且在检修壳体及内腔的构件时,不能直接通过排出口将壳体内腔下部的污泥混合物放空,不便于设备的维护与检修。2)由于该装置单一以空气泵提供的空气作为向污水充氧和水流提升及在循环通道内流动的动力,存在提升动力和充氧能力的矛盾,当随着进水水质、水量的变化,壳体内溶解氧浓度过高时,需要减少空气量,而减少空气量会导致提升动力降低,提升动力降低将影响污水的循环流速和混合液中的泥水混合效果,从而影响处理效果,当壳体内的溶解氧浓度过低时,需增大空气量,空气量增大时会导致提升动力增大,提升动力增大时会使泥水混合强度增强,而过大的泥水混合强度会制约活性污泥絮体的形成,装置内水流循环通道各区域难以产生溶解氧的浓度差,难以在装置内形成明显的、有一定流经时间的厌氧、缺氧和好氧交替环境,从而影响脱氮除磷效果,因此不利于作业过程的稳定运行。此外,在环状泥水分离区下端的进口处,该进口的上板件内侧顶点大于其下板件的内侧顶点,运行中,反硝化反应产生的氮气在上升过程中,进口的上板件会将部分氮气导入环状泥水分离区(三相分离区)内,影响环状分离区内的泥水分离效果,从而影响SS去除;该装置的出水口直接与环状泥水分离区上部相通,容易导致出水短流而影响环状泥水分离区的泥水分离效果;该装置由三个筒体嵌套组合而成,结构较复杂。

  发明内容

  本发明的目的是提出可提高处理效果和运行稳定的一体化污水生物脱氮除磷装置,具有活性污泥吸附、厌氧、好氧和缺氧的环境,可有效去除污水中的有机物、氮、磷、SS,提高处理效果。

  实现发明目的的技术方案,参见图1:

  包括竖向筒体的壳体1;

  所述壳体1内腔内设有外竖向板2和内竖向板3;

  所述外竖向板2与所述壳体壁之间构成位于所述壳体中上部的泥水分离区4,泥水分离区4上部与出水口1d连通;

  所述内竖向板3将所述壳体1内腔分割为两个腔室,内竖向板3一侧的腔室为水流上升通道5,另一侧为水流下降通道6,所述水流上升通道5的上、下端分别与水流下降通道6的上、下部相通,即在所述壳体1内构成水流循环通道,所述位于壳体中上部的泥水分离区4的进口4a与水流下降通道6的中下部相通;

  所述内竖向板3下端的下方即壳体1内腔底部设有污泥聚集区7;

  所述壳体1内腔底壁上设有进水口1a和排泥口1b,进水口1a和排泥口1b分别与所述污泥聚集区7相通;

  设有射流曝气装置8,射流曝气装置8包括污泥泵8a和位于所述内竖向板3一侧的水流上升通道5中下部的曝气器8b,所述污泥泵8a的出口与所述曝气器8b的入口由管件8c连通,污泥泵8a的泥水进口与所述污泥聚集区7连通,所述管件8c上设有射流器8d,射流器8d上的空气进口连接进气管8e的下端,进气管8e上部设有可调节进入空气量的控制阀8f,所述射流器工作状态下的负压将来自进气管的空气吸入;射流曝气装置8中的污泥泵8a所提供的动力使污泥聚集区7内的高浓度污泥、污水和来自于进气管8e的空气,通过射流器8d进行充分混合、紊流切割后由曝气器8b曝气而进入所述竖向板一侧的水流上升通道5上段(即好氧区),为好氧环境下的被处理污水提供活性污泥和充氧,同时为水流在循环通道内的流动提供动力。

  进一步的是:

  所述射流曝气装置8中的曝气器8b位于所述内竖向板3一侧的水流上升通道5中下部的结构,即在曝气器8b上方的水流通道5及水流转向向下的区域构成作用于污水的好氧区,内竖向板3另一侧的水流下降通道6与所述好氧区尾端相接的水流通道区域构成作用于污水的缺氧区,曝气器8b下方的、且与所述缺氧区尾端相接的区域构成作用于污水的厌氧区,厌氧区尾端与所述好氧区的前端相接,所述污泥聚集区7位于所述的厌氧区内,即所述射流曝气装置8中的曝气器8b位于所述水流上升通道5中下部的结构,即在所述壳体1内的水流循环通道内构成作用于污水的、首尾相接的污泥吸附区/厌氧区、缺氧区和好氧区,即在满足所谓污水生物脱氮除磷处理过程中必须的“厌氧、缺氧、好氧”环境外,厌氧区内的高浓度活性污泥还对污水中的污染物进行吸附,实现在所述壳体1内的水流循环通道内对污水形成周而复始地循环进行活性污泥吸附/厌氧生物反应、好氧生物反应、缺氧生物反应。

  所述壳体1上部设有集水堰1c,集水堰1c与泥水分离区4上部相通,集水堰1c上有所述的出水口1d,即泥水分离区4上部通过集水堰1c与所述的出水口1d连通。

  所述进口4a位于所述泥水分离区4的下端,所述进口4a的下方设置由上、下两斜板板端相连接的构件10,下斜板向上斜置,上斜板向下斜置,所述上、下斜板的外端与所述壳体的内壁连接,所述上、下两斜板内端连接后的内侧顶点凸出于所述的进口4a且位于进口4a下方,向上斜置的下斜板可阻挡下方缺氧区反硝化反应生成的氮气从水中析出形成的气泡进入泥水分离区4内,避免所述气泡进入泥水分离区4内影响泥水分离效果。

  本发明工作过程原理及作用:

  在连续作业过程中,被处理的污水由进水口1a进入壳体1内腔底部的、且为厌氧环境的污泥聚集区7,处于高浓度活性污泥和厌氧环境下的污水首先被进行活性污泥吸附和厌氧环境的生物处理,高浓度活性污泥即对污水中的污染物进行吸附,而去除污水中的部分有机物和SS、以及部分氮、磷,降低了后续处理的污水中的污染物浓度,相应提高了装置的抗冲击负荷能力和处理效果,同时,高浓度活性污泥在厌氧环境下消耗污水中有机物并释放磷,实现污水生物处理的厌氧释磷反应,为后续处理过程的好氧环境生物除磷创造条件;经高浓度污泥吸附作用和厌氧释磷后的污水,在所述射流曝气装置8的作用下而向上流动,进入所述曝气器8b上方的好氧区进行好氧环境的生物处理,由射流曝气装置8提供活性污泥和空气,空气对污水充氧并进行搅拌,并提高好氧区的活性污泥浓度,处在好氧环境的污水即与活性污泥充分混合,活性污泥对污水中的有机物实现降解与去除,同时进行硝化反应和好氧生物除磷,硝化反应将污水中氨氮转化为硝酸盐氮和亚硝酸盐氮,从而在好氧区进一步去除污水中的有机物、氨氮和磷,并为后续缺氧环境反硝化脱氮创造条件;经好氧环境下处理后的污水,随即进入所述的缺氧区进行缺氧环境下的生物处理,活性污泥在缺氧条件下进行反硝化反应,在消耗污水中有机物的同时将硝酸盐氮和亚硝酸盐氮转化为氮气从水中逸出,从而去除总氮和进一步去除有机物;经缺氧环境处理的泥水混合物,经由所述泥水分离区4下部的进口4a进入泥水分离区4进行泥水分离,即将活性污泥从污水中分离,去除污水中的SS,经分离后的水则均匀溢流至泥水分离区4上部的集水堰1c内,直至由出水口排出,经分离后的活性污泥混合物下沉至所述壳体底腔的污泥聚集区7,实现活性污泥回流,并在污泥聚集区形成高浓度活性污泥;通过控制阀8f调节进风量与所述污泥泵8a输出的泥水混合物的流量与流速相匹配,实现好氧区、缺氧区运行所要求的溶解氧浓度,在水流循环通道各区域产生溶解氧的浓度差,形成明显的、有一定流经时间的厌氧、缺氧和好氧交替环境,污水在所述壳体1内的水流循环通道内周而复始地循环进行活性污泥吸附/厌氧生物反应、好氧生物反应、缺氧生物反应,实现污染物的有效去除;定期通过排泥口1b排放剩余污泥并另行处理。

  本发明技术效果:

  1、由于本发明在壳体1内腔底部设有污泥聚集区7并位于厌氧环境区域内,且设在壳体底壁上的进水口1a和排泥口1b与污泥聚集区7相通,其一是,使得所进入的污水首先进行高浓度活性污泥吸附和厌氧环境的生物处理,高浓度活性污泥即对污水中的部分污染物进行吸附,而去除污水中的部分有机物和SS、以及部分氮、磷,同时活性污泥在厌氧环境下消耗水中有机物并释放磷,实现污水生物处理的厌氧释磷反应,为后续处理的好氧环境生物除磷创造条件,由于高浓度活性污泥的吸附附作用与效果降低了后续处理污水中的污染物浓度,相应提高了装置的抗冲击负荷能力可提高污水处理效果;其二是,排泥口1b与壳体底腔的高浓度污泥聚集区相通,所排放的污泥浓度高,降低了后续污泥处理处置的难度和处理成本,且壳体底壁上与污泥聚集区7相通的进水口1a和污泥泵8a泥水进口的泥水混合物流动搅拌作用,以及从底部定期的排放污泥可避免污泥的板结现象,可减少装置的维护工作量;其三,排泥口1b兼有放空管的功能,可直接通过该排泥口将壳体腔内的泥水混合物放空,有利于设备的维护与检修及提高设备维护与检修的工作效率。

  2、由于本发明设有射流曝气装置8,其一,射流曝气装置8中的污泥泵8a,可将污泥聚集区的高浓度污泥提升至曝气器8b上方的好氧区,以提高好氧环境和后续缺氧环境的活性污泥浓度,从而提高污水在好氧和缺氧环境下的处理效果;其二,被提升的高浓度活性污泥、污水与来自进气管8e的空气经射流器8d作用进行充分混合,在流经射流器8d时,产生正压向负压的急剧转变,产生流体紊流切割与融合效果,将大粒径污泥絮体切割成小粒径污泥絮体,增大污泥絮体的比表面积,同时由于负压作用吸入含有氧气的空气并增大氧气在污水中的溶解度,然后由曝气器4d向上喷射至好氧区,在好氧区实现空气与污泥、污水的混合与流动,可提高污泥、污水和空气混合与传质效果,加速污染物氧化从而提高对污染物的去除效果,从而提高提高污水污染物的去除率;其三,射流曝气装置8中进气管8e上设有可调节进气量的控制阀8f,通过控制阀8f调节进风量与所述污泥泵8a输出的泥水混合物的流量与流速相匹配,实现好氧区、缺氧区运行所要求的溶解氧浓度,有利于活性污泥絮体的形成,装置内水流循环通道各区域产生溶解氧的浓度差,形成明显的、有一定流经时间的厌氧、缺氧和好氧交替环境,从而提高脱氮除磷效果,实现本发明的稳定运行,克服了背景技术单一以空气泵提供的空气为提升动力和充氧所存在的提升动力和充氧能力的矛盾的不足。

  3、所述泥水分离区4下端的进口4a的下方设置由上下两斜板板端相连接的构件10,下斜板向上斜置,上斜板向下斜置,所述上、下两斜板内端连接后的内侧顶点凸出于所述的进口4a且位于进口4a下方,向上斜置的下斜板可阻挡下方缺氧区反硝化反应生成的氮气从水中析出形成的气泡进入泥水分离区4内,避免所述气泡进入泥水分离区4内影响泥水分离效果,有利于提高泥水分离区4内的泥水分离效果。

  4、由于所述壳体上部设有与泥水分离区4上部相通与集水堰1c,集水堰1c上有所述的出水口1d,即泥水分离区4上部通过集水堰1c与所述的出水口1d连通,即泥水分离区4的出水由上部首先进入集水堰1c内,然后由出水口1d排出,由于集水堰1c对来自泥水分离区4的出水具有调节作用,可实现水的均匀出流,可消除出水的短流现象,有利于运行状态的稳定,提高泥水分离区4的泥水分离效果,降低出水中SS及其携带的其它污染物,从而提高污染物去除率。

  5、在所述壳体1内通过设置外竖向板2和内竖向板3即构成所述的水流循环通道,结构简单,可降低制造成本。

  本发明所具有的其它特点与效果将结合具体实施方式进一步说明。

  下面结合附图和具体实施方式对本发明进一步说明。

相关推荐