厌氧铁还原联用污泥减量处理工艺

发布时间:2018-3-29 11:53:03

  申请日2015.12.10

  公开(公告)日2016.03.23

  IPC分类号C02F9/14; C02F11/04; C02F11/06

  摘要

  本发明公开了一种臭氧-厌氧铁还原联用回收利用污泥的芬顿氧化-生物组合处理工艺及装置。其工艺过程为:将芬顿氧化产生的含铁污泥与二沉池排出的部分生物处理剩余污泥混合后,首先进入臭氧反应池,将含铁污泥中难降解有机物初步分解为小分子易降解有机物,同时将生物处理剩余污泥微生物细胞裂解、破壁后,再进入厌氧铁还原反应器;在厌氧铁还原反应器中进一步改善污泥中有机成分的可降解性,同时在厌氧铁还原菌的作用下完成芬顿含铁污泥中Fe3+转变为Fe2+的过程;最后将含Fe2+反应后的固液产物全部回用至芬顿氧化工艺前端,以部分替代芬顿氧化工艺中投加的Fe2+,同时实现系统污泥减量,以节省工程投资及运行费用。

  摘要附图

 

  权利要求书

  1.一种臭氧-厌氧铁还原联用污泥减量的芬顿氧化-生物组合处理工艺,其特征在于,反应过程包括:(1)将芬顿氧化产生的含铁污泥与二沉池排出的部分生物处理剩余污泥混合;(2)将污泥混合液通入臭氧反应池,将污泥中大分子难降解有机物转变为小分子有机物,同时完成污泥微生物细胞的裂解、破壁;(3)臭氧反应后出水进入厌氧铁还原生物反应器,在污泥中有机成分得以进一步降解的同时,芬顿含铁污泥中的Fe3+在厌氧铁还原菌的作用下转变为Fe2+;(4)最后将厌氧铁还原反应器中含Fe2+固液两相反应产物全部回用至芬顿氧化工艺前端,以部分替代芬顿氧化工艺中投加的Fe2+,同时实现系统污泥减量;其中含Fe2+固液两相反应产物中残留有机物可在芬顿氧化芬顿氧化-生物组合处理工艺中继续完成降解过程。

  2.如权利要求1所述的臭氧-厌氧铁还原联用污泥减量的芬顿氧化-生物组合处理工艺,其特征在于,所述步骤(1)中的含铁污泥与二沉池排出的部分生物处理剩余污泥按质量比2∶1~3∶1混合。

  3.如权利要求1所述的臭氧-厌氧铁还原联用污泥减量的芬顿氧化-生物组合处理工艺,其特征在于,所述步骤(1)中的芬顿氧化反应运行前期全部为外源性投加Fe2+,后期可用污泥经臭氧化、厌氧铁还原生物处理所得的产物替代所投加的部分Fe2+。

  4.如权利要求1所述的臭氧-厌氧铁还原联用污泥减量的芬顿氧化-生物组合处理工艺,其特征在于,所述步骤(2)中的臭氧反应池中的臭氧投量为20mg/L,反应时间为20min。

  5.如权利要求1所述的臭氧-厌氧铁还原联用污泥减量的芬顿氧化-生物组合处理工艺,其特征在于,所述步骤(3)中的厌氧铁还原生物反应器反应温度为35℃,前期启动时接种厌氧颗粒污泥;运行稳定反应24h后可将污泥中90%以上的Fe3+转变为Fe2+。

  6.如权利要求1所述的臭氧-厌氧铁还原联用污泥减量的芬顿氧化-生物组合处理工艺,其特征在于,述步骤(4)中的芬顿氧化-生物组合处理工艺中,生物处理为水解酸化、接触氧化工艺。

  说明书

  一种臭氧-厌氧铁还原联用污泥减量的芬顿氧化-生物组合处理工艺

  技术领域

  本发明属于工业废水处理及污泥资源化领域,具体涉及一种臭氧-厌氧铁还原联用污泥减量的芬顿氧化-生物组合处理工艺。

  背景技术

  芬顿氧化是近年来在难降解工业废水处理领域开始应用的技术,其技术优势在于通过Fe2+在酸性条件下催化H2O2生成氧化性很强的羟基自由基,从而将废水中有机物降解。以芬顿氧化作为难降解工业废水的预处理,在大量去除有机物的同时,可将部分难降解的有机物开环、断链,有效改善其可生化性。因而废水处理中常用芬顿氧化作为预处理提高其可生化性,然后再用生物处理工艺处理,从而获得良好的有机物去除效果。但芬顿氧化的主要问题在于反应前需将废水pH调节至3.0~4.0,反应完毕进入混凝阶段,需要将废水pH用碱调节至7~8,不仅酸碱投加成本高,并由此产生大量铁泥,铁泥产生量及处置成本高。

  因此在芬顿氧化-生物处理组合工艺中,如能将含铁混凝污泥及生物处理剩余污泥中的Fe3+还原成为Fe2+,同时将污泥中的有机成分改性并提高其可降解性,则经该过程处理后的污泥可以回用至芬顿氧化-生物处理组合工艺前端,以部分替代芬顿氧化过程中投加的Fe2+,在节省芬顿氧化Fe2+药剂费的同时实现污泥减量。

  发明内容

  本发明旨在提供一种臭氧-厌氧铁还原联用污泥减量的芬顿氧化-生物组合处理工艺,可为降低工业废水芬顿氧化-生物组合处理工艺运行费用及实现污泥减量提供经济可行的技术方法。

  为了解决上述问题,本发明提供了一种臭氧-厌氧铁还原联用污泥减量的芬顿氧化-生物组合处理工艺,其特征在于,反应过程包括:(1)将芬顿氧化产生的含铁污泥与二沉池排出的部分生物处理剩余污泥混合;(2)将污泥混合液通入臭氧反应池,将污泥中大分子难降解有机物转变为小分子有机物,同时完成污泥微生物细胞的裂解、破壁;(3)臭氧反应后出水进入厌氧铁还原生物反应器,在污泥中有机成分得以进一步降解的同时,芬顿含铁污泥中的Fe3+在厌氧铁还原菌 的作用下转变为Fe2+;(4)最后将厌氧铁还原反应器中含Fe2+固液两相反应产物全部回用至芬顿氧化工艺前端,以部分替代芬顿氧化工艺中投加的Fe2+,同时实现系统污泥减量;其中含Fe2+固液两相反应产物中残留有机物可在芬顿氧化芬顿氧化-生物组合处理工艺中继续完成降解过程。

  优选地,所述步骤(1)中的含铁污泥与二沉池排出的部分生物处理剩余污泥按质量比2∶1~3∶1混合。

  优选地,所述步骤(1)中的芬顿氧化反应运行前期全部为外源性投加Fe2+,后期可用污泥经臭氧化、厌氧铁还原生物处理所得的产物替代所投加的部分Fe2+。

  优选地,所述步骤(2)中的臭氧反应池中的臭氧投量为20mg/L,反应时间为20min;

  优选地,所述步骤(3)中的厌氧铁还原生物反应器反应温度为35℃,前期启动时接种厌氧颗粒污泥;运行稳定反应24h后可将污泥中90%以上的Fe3+转变为Fe2+。

  优选地,述步骤(4)中的芬顿氧化-生物组合处理工艺中,生物处理为水解酸化、接触氧化工艺。

  本发明的技术原理和工艺流程是:将芬顿氧化产生的含铁污泥与二沉池排出的生物处理剩余污泥按质量比2∶1混合后,首先进入臭氧反应池,将含铁污泥中难降解有机物初步分解为小分子易降解有机物,同时将生物处理剩余污泥微生物细胞裂解、破壁后,再进入厌氧铁还原反应器;在厌氧铁还原反应器中进一步改善污泥中有机成分的可降解性,同时在厌氧铁还原菌的作用下完成芬顿含铁污泥中Fe3+转变为Fe2+的过程;最后将含Fe2+反应后的固液产物全部回用至芬顿氧化工艺前端,以部分替代芬顿氧化工艺中投加的Fe2+,同时实现系统污泥减量,以节省工程投资及运行费用。

  本发明的适用范围为印染、化工、造纸行业等产生的难降解工业废水的处理。通过本发明提出的方法,实现降低工业废水芬顿氧化-生物处理组合工艺运行成本,并使污泥减量排放。本发明提出的一种臭氧-厌氧铁还原联用污泥减量的芬顿氧化-生物组合处理工艺与传统技术相比有如下优点:

  (1)可节省芬顿氧化外源性投加的Fe2+,节省工程运行费用;

  (2)含铁物化污泥及生物处理剩余污泥经臭氧-厌氧铁还原联用处理后,可回用于芬顿氧化-生物组合处理工艺前端,实现污泥的减量排放。

相关推荐