连续流A/O除磷串联多级A/O自养脱氮工艺处理低碳源城市污水的装置和方法

发布时间:2017-12-2 17:23:16

  申请日

  2017.08.08

  公开(公告)日

  2017.10.20

  IPC分类号

  C02F3/30;C02F3/34

  摘要

  本发明涉及一种连续流A/O除磷串联多级A/O自养脱氮工艺处理低碳源城市 污水的装置及应用方法,它属于污水生物处理技术领域。该装置主体由城市污水原水箱、连续流A/O除磷装置、中间水箱和多级A/O自养脱氮装置四部分组成;其中连续流A/O除磷装置由一段厌氧反应区、三段好氧反应区和第一后置沉淀区组成,其内进行生物强化除磷作用;多级A/O自养脱氮装置由三段短程硝化反应区和三段厌氧氨氧化反应区(内部设置Anammox海绵填料)交替构成及第二后置沉淀区,其内发生短程硝化反应和厌氧氨氧化反应,进而实现低碳源城市污水的脱氮除磷。

    权利要求书

  1.连续流A/O除磷串联多级A/O自养脱氮工艺处理低碳源城市污水的装置,其特征在于:装置包括城市污水原水箱(1)、连续流A/O除磷装置(2)、中间水箱(4)和多级A/O自养脱氮装置(5);所述的城市污水原水箱(1)上设置进水管(1.1)、第一溢流管(1.2)和第一放空管(1.3);所述的中间水箱(4)上设置第二溢流管(4.1)和第二放空管(4.2);所述的连续流A/O除磷装置(2)由开孔隔板分为四个区域,沿进水方向依次为一段厌氧反应区(2.1)、三段好氧反应区(2.2),连续流A/O除磷装置(2)后设置第一后置沉淀区(3);所述的城市污水原水箱(1)采用进水泵(1.4)与一段厌氧反应区(2.1)连接;所述的一段厌氧反应区(2.1)设有第一搅拌器(2.3);所述的三段好氧反应区(2.2)的底部均设有曝气装置和DO传感器,曝气装置由第一空气压缩机(2.4)通过第一空气转子流量计(2.5)与第一黏砂块曝气头(2.6)连通,第一DO传感器(2.9)由数据线与第一DO测定仪(2.8)连接;第一后置沉淀区(3)底部通过第一回流污泥控制阀(3.1)和第一污泥回流泵(2.7)与一段厌氧反应区(2.1)连通,剩余污泥通过第一剩余污泥排放控制阀(3.2)排出系统;所述的多级A/O自养脱氮装置(5)由开孔隔板分为六个区域,沿水流方向依次为三段厌氧氨氧化反应区(5.1)和三段短程硝化反应区(5.2)交替分布,多级A/O自养脱氮装置(5)后设置第二后置沉淀区(6)和出水管(6.1);所述的中间水箱(4)采用中间水泵(4.3)与第一段厌氧氨氧化反应区(5.1)连接;所述的三段厌氧氨氧化反应区(5.1)内均设有第二搅拌器(5.3),以及采用聚氨酯海绵(5.8)作为填料;所述的三段短程硝化反应区(5.2)的底部均设有曝气装置和DO传感器,曝气装置由第二空气压缩机(5.4)通过第二空气转子流量计(5.5)与第二黏砂块曝气头(5.6)连通,第二DO传感器(5.10)由数据线与第二DO测定仪(5.9)连接;第二后置沉淀区(6)底部通过第二回流污泥控制阀(6.2)和第二污泥回流泵(5.7)与第一段厌氧氨氧化反应区(5.1)连通,剩余污泥通过第二剩余污泥排放控制阀(6.3)排出系统。

  2.应用如权利要求1所述的一种连续流A/O除磷串联多级A/O自养脱氮工艺处理低碳源城市污水装置的方法,其特征在于,按以下步骤进行:

  1)接种启动阶段

  接种除磷污泥于连续流A/O除磷装置(2)中,控制污泥浓度为3000~4000mg/L,以城市污水为处理对象,污泥回流比为50~100%,三段好氧反应区内的DO浓度控制为0.5~2.0mg/L,水力停留时间HRT控制为2~4h,污泥停留时间SRT控制为4~6d,;当沉淀区出水的PO43-<0.5mg/L并稳定维持超过15天时,说明连续流A/O除磷装置启动成功;

  接种短程硝化污泥于多级A/O自养脱氮装置中,控制污泥浓度为2000~3000mg/L,同时接种Anammox海绵填料于多级A/O自养脱氮装置中的三段厌氧氨氧化反应区中,填充比为30~40%,启动成功的连续流A/O除磷装置的出水为处理对象,水温控制为30~35℃,HRT控制为8~12h,多级A/O自养脱氮装置不排泥;监测短程硝化反应区内部的DO浓度,维持DO浓度为0.3~1.0mg/L,同时根据各厌氧氨氧化反应区出水NO2--N浓度和第二后置沉淀区出水的NH4+-N浓度调节各短程硝化反应区的DO浓度和HRT,当某个厌氧氨氧化反应区的出水NO2--N浓度大于1.0mg/L且第二后置沉淀区出水NH4+-N浓度小于0.5mg/L时,降低此厌氧氨氧化反应区所对应的前段短程硝化反应区的DO浓度为0.3~0.5mg/L,同时缩短HRT为8~10h;当某个厌氧氨氧化反应区的出水NO2--N浓度小于1.0mg/L且第二后置沉淀区出水NH4+-N浓度大于10mg/L时,提高此厌氧氨氧化反应区所对应的前段短程硝化反应区的DO浓度为0.5~1.0mg/L,同时提高HRT为10~12h;启动过程中,当出水中的NH4+和TN浓度分别达到5mg/L和15mg/L以下,且出水效果维持长达60天以上时,则说明多级A/O自养脱氮装置启动成功;

  2)稳定运行阶段

  当连续流A/O除磷装置和多级A/O自养脱氮装置都启动完成后,将两个装置连接起来,以城市污水为处理对象,实时监控好氧反应区内部的DO浓度和进出水水质,同时根据各厌氧氨氧化反应区出水NO2--N浓度和第二后置沉淀区出水的NH4+-N浓度调节各短程硝化反应区的DO浓度和HRT,当某个厌氧氨氧化反应区的出水NO2--N浓度大于1.0mg/L且第二后置沉淀区出水NH4+-N浓度小于0.5mg/L时,降低此厌氧氨氧化反应区所对应的前段短程硝化反应区的DO浓度为0.3~0.5mg/L,同时缩短HRT为8~10h;当某个厌氧氨氧化反应区的出水NO2--N浓度小于1.0mg/L且第二后置沉淀区出水NH4+-N浓度大于10mg/L时,提高此厌氧氨氧化反应区所对应的前段短程硝化反应区的DO浓度为0.5~1.0mg/L,同时提高HRT为10~12h;;当出水中的NH4+和TN浓度分别达到5mg/L和15mg/L以下,且出水效果维持100d以上时,则说明装置实现长期稳定运行;此后,按照35℃→30℃→25℃→20℃→15℃→10℃的方式逐渐降低装置的运行温度,每隔15d降低5℃,实现低温条件下低碳源城市污水连续流A/O除磷串联多级A/O自养脱氮装置的稳定运行。

  3.根据权利要求2所述的方法,其特征在于所述的开孔隔板按照水流方向采用上下交错设置过流孔的方式进行连接各个格室。

  4.根据权利要求2所述的方法,其特征在于步骤1)中所述的除磷污泥来源于城市污水处理厂二沉池回流污泥。

  5.根据权利要求2所述的一种连续流A/O除磷串联多级A/O自养脱氮工艺处理低碳源城市污水装置的应用方法,其特征在于步骤1)中所述的三段厌氧氨氧化反应区所投加的聚氨酯海绵填料的尺寸范围为1.5cm×1.5cm×1.5cm-2.0cm×2.0cm×2.0cm。

  6.根据权利要求2所述的一种连续流A/O除磷串联多级A/O自养脱氮工艺处理低碳源城市污水装置的应用方法,其特征在于步骤1)中所述的Anammox海绵填料来源于污泥消化液Anammox工程。

  说明书

  连续流A/O除磷串联多级A/O自养脱氮工艺处理低碳源城市污水的装置和方法

  技术领域

  本发明属于污水生物处理技术领域,具体涉及一种连续流A/O除磷串联多级A/O自养脱氮工艺处理低碳源城市污水的装置及应用方法。

  背景技术

  传统生物脱氮技术由硝化和反硝化两个过程组成,硝化作用就是硝化菌将氨氮氧化为硝酸盐氮,反硝化作用就是反硝化菌利用有机物作为碳源将硝酸盐氮还原为氮气,从而达到将氮从水中脱除的目的。生物除磷技术主要利用聚磷菌在厌氧区吸收有机物释放体内的磷,随后在好氧区发生过量吸磷作用将水中的磷吸收至体内,从而达到将磷从水中脱除的目的。从以上生物脱氮除磷的原理可以看出,生物脱氮与生物除磷都需要有机碳源,因此,有机碳源不足时就会造成二者对于有机碳源的竞争,进而导致污水生物脱氮除磷效果变差。

  由于我国化粪池的普遍设置和排水管网较长,造成城市污水有机碳源缺乏,不能满足传统生物脱氮除磷技术对有机碳源的需求。这种情况下城市污水处理厂为了达标排放,一般通过投加外碳源(如,甲醇)来满足生物脱氮除磷对有机碳源的需求,从而造成污水处理费用的大幅增加。近年来,随着污水处理领域的不断发展,一些新型的生物脱氮除磷技术得到了大幅度的发展,其中包括:同步硝化反硝化技术、短程硝化反硝化技术、反硝化除磷技术、厌氧氨氧化脱氮工艺和全程自养脱氮技术等。其中厌氧氨氧化自养脱氮工艺需要将部分的NH4+氧化为NO2-,而后得到的NO2-再氧化剩余部分的NH4+,最终达到脱氮的目的。此过程中1molNH4+只需消耗0.8mol的O2;仅以CO2作为碳源,无需有机物的消耗。与传统生物脱氮工艺相比,厌氧氨氧化自养脱氮技术可节省100%的有机碳源消耗,可节约60%的曝气量,可减少90%的污泥产量,从而大大降低了污水处理工艺的直接能耗和运行费用,同时厌氧氨氧化生物脱氮节约的原水有机碳源,可完全满足系统对于生物除磷的需求。

  因此,为满足污水处理的节能降耗要求,同时实现低碳源城市污水的出水氮磷达标,研究和开发以厌氧氨氧化工艺为基础的城市污水脱氮除磷技术具有重要的现实意义,此外厌氧氨氧化工艺在高氨氮污水如污泥消化液和垃圾渗滤液中的成功应用为该技术在城市污水中的推广应用提供了技术支撑。

  发明内容

  本发明的目的是提出一种连续流A/O除磷串联多级A/O自养脱氮工艺处理低碳源城市污水的装置及应用方法。该工艺采用生物相分离,将异养聚磷菌和自养硝化菌/厌氧氨氧化细菌分别在两个装置中进行培养,解决了异养菌和自养菌的污泥龄不同的问题,同时进水中的有机物在连续流A/O除磷装置中得到去除,避免了由于有机物存在,反硝化细菌会与厌氧氨氧化细菌产生竞争的问题。低碳源城市污水首先进入连续流A/O除磷装置,进行有机物和磷酸盐的去除,不发生硝化反应;除磷装置的出水进入多级A/O自养脱氮装置,在缺/好氧交替的环境中,利用短程硝化作用和厌氧氨氧化作用实现了城市污水中氮元素的去除,保证了出水水质,同时缺/好氧交替的方式保证了装置短程硝化的长期稳定。

  本发明涉及一种连续流A/O除磷串联多级A/O自养脱氮工艺处理低碳源城市污水的装置。装置由城市污水原水箱、连续流A/O除磷装置、中间水箱和多级A/O自养脱氮装置四部分组成;所述的城市污水原水箱上设置进水管、第一溢流管和第一放空管;所述的中间水箱上设置第二溢流管和第二放空管;所述的连续流A/O除磷装置由开孔隔板分为四个区域,沿进水方向依次为一段厌氧反应区、三段好氧反应区和第一后置沉淀区;所述的城市污水原水箱采用进水泵与一段厌氧反应区连接;所述的一段厌氧反应区设有第一搅拌器;所述的三段好氧反应区的底部均设有曝气装置和DO传感器,曝气装置由第一空气压缩机通过第一空气转子流量计与第一黏砂块曝气头连通,第一DO传感器由数据线与第一DO测定仪连接;第一后置沉淀区底部通过第一回流污泥控制阀和第一污泥回流泵与一段厌氧反应区连通,剩余污泥通过第一剩余污泥排放控制阀排出系统;所述的多级A/O自养脱氮装置由开孔隔板分为六个区域,沿水流方向依次为三段厌氧氨氧化反应区和三段短程硝化反应区交替分布,第二后置沉淀区和出水管;所述的中间水箱采用中间水泵与第一段厌氧氨氧化反应区连接;所述的三段厌氧氨氧化反应区内均设有第二搅拌器,以及采用聚氨酯海绵作为填料;所述的三段短程硝化反应区的底部均设有曝气装置和DO传感器,曝气装置由第二空气压缩机通过第二空气转子流量计与第二黏砂块曝气头连通,第二DO传感器由数据线与第二DO测定仪连接;第二后置沉淀区底部通过第二回流污泥控制阀和第二污泥回流泵与第一段厌氧氨氧化反应区连通,剩余污泥通过第二剩余污泥排放控制阀排出系统。

  所述的开孔隔板按照水流方向采用上下交错设置过流孔的方式进行连接各个格室;所述的海绵填料的尺寸范围为1.5cm×1.5cm×1.5cm-2.0cm×2.0cm×2.0cm。

  基于本发明的试验装置,城市污水的处理流程为:

  城市污水由原水箱与第一后置沉淀区回流的泥水混合物混合进入一段厌氧反应区,聚磷菌利用原水中的有机碳源进行厌氧释磷反应,将原水中的挥发性脂肪酸VFA转化为细胞体内的聚羟基脂肪酸酯PHA,同时向水中释放PO43-;而后厌氧反应区的泥水混合物进入好氧反应区,聚磷菌以O2为电子受体,利用细胞体内的PHA发生好氧吸磷反应,大量吸收水体中的PO43-,实现生物除磷反应;之后好氧区的泥水混合物进入第一后置沉淀区完成泥水分离,回流污泥通过第一污泥回流泵回流至一段厌氧反应区,剩余污泥通过第一剩余污泥排放阀定期排出系统,第一后置沉淀区的上清液在重力的作用下进入中间水箱。除磷后的污水由中间水箱与第二后置沉淀区回流的泥水混合物混合进入第一段厌氧氨氧化反应区,海绵填料上的厌氧氨氧化菌将水中的NO2-和NH4+转化为N2和少量NO3-,进行生物脱氮反应;而后第一段的厌氧氨氧化反应区的泥水混合物进入第一段短程硝化反应区,在氧气的作用下发生短程硝化反应,氨氧化细菌AOB利用氧气将参与厌氧氨氧化反应的NH4+部分氧化为NO2-,为下一段的厌氧氨氧化反应提供底物;在接下来的缺氧区和好氧区重复进行厌氧氨氧化反应和短程反应,进一步完成对于污水的生物脱氮;三段短程硝化反应区的泥水混合物进入第二后置沉淀区进行泥水分离,上清液作为出水由出水管排出装置,沉淀污泥通过第二污泥回流泵回流至第一段厌氧氨氧化反应区。

  上述一种连续流A/O除磷串联多级A/O自养脱氮工艺处理低碳源城市污水的应用方法,其特征在于:包括以下步骤:

  1)接种启动阶段

  接种除磷污泥于连续流A/O装置中,控制污泥浓度为3000~4000mg/L,以城市污水为处理对象,污泥回流比为50~100%,三段好氧反应区内的DO浓度控制为0.5~2.0mg/L,水力停留时间HRT控制为2~4h,污泥停留时间SRT控制为4~6d,较短的HRT和SRT确保了连续流A/O装置中聚磷菌的富集和硝化细菌的淘洗,保障了装置的除磷效果。当沉淀区出水的PO43-<0.5mg/L并稳定维持超过15天时,说明连续流A/O除磷装置启动成功;

  接种短程硝化污泥于多级A/O自养脱氮装置中,控制污泥浓度为2000~3000mg/L,同时接种Anammox海绵填料于多级A/O自养脱氮装置中的三段厌氧氨氧化反应区中,填充比为30~40%,启动成功的连续流A/O除磷装置的出水为处理对象,水温控制为30~35℃,HRT控制为8~12h,反应器不排泥。监测短程硝化反应区内部的DO浓度,维持DO浓度为0.3~1.0mg/L,同时根据各厌氧氨氧化反应区出水NO2--N浓度和第二后置沉淀区出水的NH4+-N浓度调节各短程硝化反应区的DO浓度和HRT,当某个厌氧氨氧化反应区的出水NO2--N浓度大于1.0mg/L且第二后置沉淀区出水NH4+-N浓度小于0.5mg/L时,降低此厌氧氨氧化反应区所对应的前段短程硝化反应区的DO浓度为0.3~0.5mg/L,同时缩短HRT为8~10h;当某个厌氧氨氧化反应区的出水NO2--N浓度小于1.0mg/L且第二后置沉淀区出水NH4+-N浓度大于10mg/L时,提高此厌氧氨氧化反应区所对应的前段短程硝化反应区的DO浓度为0.5~1.0mg/L,同时提高HRT为

  10~12h。启动过程中,当出水中的NH4+和TN浓度分别达到5mg/L和15mg/L以下,且出水效果维持长达60天以上时,则说明多级A/O自养脱氮装置启动成功;

  2)稳定运行阶段

  当连续流A/O除磷装置和多级A/O自养脱氮装置都启动完成后,将两个装置连接起来构建一种连续流A/O除磷串联多级A/O自养脱氮工艺,以城市污水为处理对象进行长期稳定运行,实时监控好氧反应区内部的DO浓度和进出水水质,同时根据各厌氧氨氧化反应区出水NO2--N浓度和第二后置沉淀区出水的NH4+-N浓度调节各短程硝化反应区的DO浓度和HRT,当某个厌氧氨氧化反应区的出水NO2--N浓度大于1.0mg/L且第二后置沉淀区出水NH4+-N浓度小于0.5mg/L时,降低此厌氧氨氧化反应区所对应的前段短程硝化反应区的DO浓度为0.3~0.5mg/L,同时缩短HRT为8~10h;当某个厌氧氨氧化反应区的出水NO2--N浓度小于1.0mg/L且第二后置沉淀区出水NH4+-N浓度大于10mg/L时,提高此厌氧氨氧化反应区所对应的前段短程硝化反应区的DO浓度为0.5~1.0mg/L,同时提高HRT为10~12h。如此调节装置系统的运行。当出水中的NH4+和TN浓度分别达到5mg/L和15mg/L以下(满足一级A排放标准),且出水效果维持100d以上时,则说明装置实现长期稳定运行。此后,按照35℃→30℃→25℃→20℃→15℃→10℃(每隔15d降低5℃)的方式逐渐降低装置的运行温度,实现低温条件下低碳源城市污水连续流A/O除磷串联多级A/O自养脱氮装置的稳定运行。

  本发明涉及的一种连续流A/O除磷串联多级A/O自养脱氮工艺处理低碳源城市污水的装置及应用方法,与现有技术相比,具有以下优点:

  (1)本发明采用厌氧氨氧化自养脱氮技术,解决了传统工艺因碳源不足而使得出水氮磷难以达标排放的问题,减少了装置的曝气能耗和碳源投加;

  (2)连续流A/O除磷装置通过强化生物除磷,不仅使得系统的出水PO43-浓度小于0.5mg/L,而且充分利用了原水中的碳源,避免了进水有机碳源对后续多级A/O自养脱氮装置的不利影响;

  (3)本发明运用生物相分开,使异养聚磷菌和和自养硝化菌/厌氧氨氧化细菌分别设置在两套反应装置中,解决了异养菌和自养菌污泥龄不同的矛盾,同时在多级A/O自养脱氮装置中采用海绵填料富集厌氧氨氧化细菌,避免了厌氧氨氧化细菌进入好氧段而受到氧气的抑制;

  (4)多级A/O自养脱氮装置缺/好氧交替形式的设置,有利于系统短程硝化的长期稳定维持,同时三段短程硝化反应区产生的NO2--N可较快的被厌氧氨氧化菌利用,避免产生较高的NO2--N对装置脱氮效果的影响;

  (5)对现有水厂的升级改造相对简单,易于推广应用。

相关推荐