申请日2018.03.12
公开(公告)日2018.08.24
IPC分类号G05B13/04
摘要
本发明提出一种基于动态多目标粒子群算法的污水处理过程优化控制方法,同时满足污水处理过程中出水水质达标和降低运行能耗的需求。首先,通过一个综合的优化框架提取污水处理过程中复杂和时变的特性,建立了数据驱动的出水水质、曝气能耗和泵送能耗模型;其次,针对动态数据驱动模型的特点,提出一种动态多目标粒子群算法用于解决多目标优化问题;然后,多变量PID控制器对溶解氧SO和硝态氮SNO的优化设定值实现跟踪控制;最后,将该动态优化控制方法应用于实际污水处理过程,实验结果表明该方法能够在保证出水水质的前提下降低能耗,有利于污水处理过程的优化控制性能。
权利要求书
1.一种基于动态多目标粒子群算法的污水处理过程动态优化控制方法,其特征在于,包括以下步骤:
(1)建立一个自适应优化目标函数用于提取污水处理过程中复杂和时变的特性,包括利用数据驱动核函数方法建立溶解氧和硝态氮的优化设定值与出水水质、曝气能耗和泵送能耗间的关系表达式,其中,该自适应优化目标函数为:
minimize F(xi,(k)(t))=(f1(xi,(k)(t)),f2(xi,(k)(t)),f3(xi,(k)(t)))T, (1)
其中,xi,(k)(t)=[SNH(t),SO(t),MLSS(t),SNO(t)]为t时刻的输入变量,SNH(t)为t时刻氨氮浓度,SO(t)为t时刻溶解氧浓度,MLSS(t)为t时刻混合液悬浮固体浓度,SNO(t)为t时刻硝态氮浓度,f1(xi,(k)(t))为t时刻自适应曝气能耗模型,f2(xi,(k)(t))为t时刻自适应泵送能耗模型,f3(xi,(k)(t))为t时刻自适应出水水质模型,cr(t)为t时刻第r个核函数的中心,r=1,2,…,10;br(t)为t时刻第r个核函数的宽度,br∈[0,1],W1r(t)为t时刻曝气能耗模型的第r个连接权值,W1r∈[1,2],W2r(t)为t时刻泵送能耗模型的第r个连接权值,W2r∈[1,2],W3r(t)为t时刻出水水质模型的第r个连接权值,W3r∈[0.5,1.0];W1为曝气能耗模型的阈值,W1∈[1.5,2.0],W2为泵送能耗模型的阈值,W2∈[1.5,2.0],W3为出水水质模型的阈值,W3∈[0.5,0.6];
(2)利用动态多目标粒子群算法优化目标函数获得优化设定值,优化周期为T小时,T∈[2,2.5],具体为:
①初始化学习因子ε1,(0)和ε2,(0),ε1,(0)∈(0,1),ε2,(0)∈(0,1),设定最大进化代数M,M∈[40,50],设定种群规模S,S∈[20,30];
②根据目标函数计算每个粒子的适应度值;确定第k次迭代第i个粒子的个体最优位置pi,(k):
其中,表示xi,(k-1)被pi,(k-1)支配,i=1,2,…,S;xi,(k)表示第k次迭代时第i个粒子的位置,非支配解集A(k)通过A(k-1)更新:
其中,A(k)表示第k次迭代的知识库,表示第k-1次迭代去除冗余非支配解的知识库,表示xi,(k-1)和pi,(k-1)互不支配;
③确定t时刻第k+1次迭代的全局最优解gt(k+1),其表达式为:
其中,gt(k+1)表示t时刻第k+1次迭代的全局最优解,dgt(k+1)表示t时刻第k+1次迭代的全局多样化最优解:
其中,x*(k)(t)表示t时刻第k次迭代具有最小密度的非支配解,Vkbest表示第k次迭代数量最少的非支配解集,cgt(k+1)表示t时刻第k+1次迭代的全局收敛性最优解:
cgt(k+1)=argmaxCDt(xi,(k)(t)), (9)
其中,CDt(xi,(k)(t))表示t时刻第k次迭代的非支配解xi,(k)(t)的收敛度,cgt(k+1)表示t时刻第k+1次迭代的非支配解xi,(k)(t)的平均支配距离:
其中,表示第j个被xi,(k)(t)支配的解,j=1,2,…,i;DSt(xi,(k)(t))表示t时刻第k次迭代的非支配解xi,(k)(t)的支配强度,Et(k)表示t时刻第k次迭代时非支配解集的分布熵:
其中,δn(k)表示第k次迭代时第n个包含非支配解的单元格,n=1,2,3…,20;βt(δn(k))表示t时刻第k次迭代单元格δn的概率分布函数,其表达式为:
lt(δn(k))表示t时刻第k次迭代单元格δn中非支配解的数目,I表示知识库的容量,I∈[20,30];
④更新每个粒子的速度和位置:
其中,表示第k+1次迭代时第i个粒子的速度,表示第k+1次迭代时第i个粒子的位置,表示第k次迭代时第i个粒子的个体最优解,表示第k次迭代的全局最优解,d=1,2,…,4;ω(k)表示第k次迭代的惯性权重,ε1,(k)和ε2,(k)表示两个学习因子,ε1,(k)∈(0,1),ε2,(k)∈(0,1),γ1和γ2是常量,γ1∈[0,1],γ2∈[0,1];
⑤判断算法是否达到设定的最大进化次数M,如达到,则终止迭代进化过程,输出SO和SNO的优化设定值,否则返回到②;
(3)多变量PID控制器对优化设定值SO和SNO实现跟踪控制;从自适应多目标粒子群算法获得的一组Pareto最优解中,找到当前状态下的一组满意优化解作为底层PID控制器的优化设定值;
(4)执行底层PID控制策略,溶解氧和硝态氮浓度分别通过曝气池第5分区氧气转换系数KLa5和内回流量Qa进行调节;
其中,Δu(t)=[ΔKLa5(t),ΔQa(t)]T,ΔKLa5(t)是t时刻第五分区氧传递系数的误差,ΔQa(t)是t时刻内回流量,Kp1和Kp2分别是t时刻SO和SNO的比例系数,Kp1∈[20,30],Kp2∈[20,30],Hi1和Hi2分别是SO和SNO的积分系数,Hi1=∈[200,300],Hi2∈[200,300],Hd1和Hd2分别是SO和SNO的微分系数,Hd1∈[10,20],Hd2∈[20,30],e(t)是t时刻误差:
e(t)=z(t)-y(t). (19)
其中,e(t)=[e1(t),e2(t)]T,e1(t)是t时刻SO的误差,e2(t)是t时刻SNO的误差,z(t)=[z1(t),z2(t)]T,z1(t)是t时刻优化设定值SO的浓度,z2(t)是t时刻优化设定值SNO的浓度,y(t)=[y1(t),y2(t)]T,y1(t)是t时刻实际获得SO的浓度,y2(t)是t时刻实际获得SNO的浓度。
说明书
一种基于动态多目标粒子群算法的污水 处理过程优化控制方法
技术领域
本发明依据污水处理生化反应过程的动态特性,设计一种综合的优化框架用于提取污水处理过程的动态特性,从而建立动态的能耗和水质模型,利用一种基于动态多目标粒子群算法的优化控制方法实现污水处理过程中同时优化三个动态模型,通过获取的优化设定值实现溶解氧SO和硝态氮SNO浓度的跟踪控制;该优化控制方法在保证出水水质的同时节约投资和运行成本,保证污水处理厂的平稳高效运行,既属于控制领域,又属于水处理领域。
背景技术
随着我国经济社会的发展和人民生活水平的提高,水资源的消耗和污水排放量日益加剧。为了减少水污染造成的影响,国民经济的增长和人民环保意识的增强,使污水处理过程自动化技术的发展迎来了新的机遇。然而,污水处理过程中的能量消耗巨大、运行成本高,使得众多污水处理厂存在建得起、养不起的问题,研究污水处理过程的动态优化控制方法实现节能降耗的意义重大,是未来污水处理行业必然的发展趋势。因此,本发明的研究成果具有广阔的应用前景。
活性污泥法工艺中,污水处理生化反应是活性污泥微生物对污水中的有机物和无机物的降解过程。溶解氧SO和硝态氮SNO浓度的高低变化会直接影响硝化过程和反硝化过程的进行,进而影响污水处理过程的能量消耗和运行成本。因此,污水处理过程中主要的控制变量是溶解氧SO和硝态氮SNO浓度。
传统的多目标优化控制方法其原理大多采用转化法,通过权重系数法将多目标问题转化为单目标问题,但是由于污水处理过程本身是一个互相冲突的多目标问题,具有高度非线性、时变性和不确定性等特点,因此,该方法获得的优化设定值存在精度不高的缺点。近年来,国内外也有基于智能优化控制方法的研究,能够解决传统多目标优化控制方法所得优化设定值精度不高的问题。但是仍然不能适应动态的污水处理过程,首先,以上的智能优化控制方法在不同的污水处理过程中没有统一的多目标函数表达式,这就使得该方法所得优化设定值和实际污水处理厂存在不匹配现象,其多目标函数表达式具有时变特性;其次,以上的智能优化控制方法多属于静态优化,稳态优化,难以根据进水水质水量的变化进行动态实时调整,没有采用动态的优化方法,无法获得准确时变的动态优化设定值。因此,建立动态的能耗和水质模型,同时利用动态的优化算法获取动态优化设定值,实现溶解氧SO和硝态氮SNO浓度的优化控制,降低运行成本,具有很好的实际应用价值。
本发明设计了一种基于动态多目标粒子群算法的污水处理过程优化控制方法,主要通过设计一种综合的优化框架用于提取污水处理过程的动态特性,从而建立动态的能耗和水质模型,利用设计的动态多目标粒子群算法获取溶解氧SO和硝态氮SNO浓度的优化设定值,并实现准确的跟踪控制。