申请日2012.06.28
公开(公告)日2014.01.15
IPC分类号C02F9/12
摘要
本发明涉及一种提高污水深度处理产水率的方法,属于污水深度处理方法领域,其特征在于包括以下步骤:将达到排放标准的污水进行过滤预处理去除悬浮物;将制得的污水再进行电吸附处理,电吸附产生2股水,一股浓水,另一股清水排入产水池或者外供;上述的电吸附浓水进行反渗透处理,反渗透处理后得到2股水,一股清水排入产水池或者外供,另一股浓水进入反渗透浓水池,最后进行深度处理达标后排放。如果污水需要除悬浮物、除盐等深度处理措施,污水回用装置的产水率不会超过75%,而本发明所述的组合工艺处理达标污水比现有单一工艺或组合工艺处理污水可以获得较高回收率,至少可得到87%以上的回用率,可避免水资源的浪费,社会效益比较好。
权利要求书
1.一种提高污水深度处理产水率的方法,其特征在于包括以下步骤:
(1)将达到排放标准的污水进行过滤预处理去除悬浮物;
(2)步骤(1)中的污水再进行电吸附处理,电吸附产生2股水,一股浓水,另一股清 水排入产水池或者外供;
(3)步骤(2)中的电吸附浓水进行反渗透处理,反渗透处理后得到2股水,一股清水 排入步骤(2)的产水池或者外供,另一股浓水进入反渗透浓水池,最后进行深度处理达标后 排放。
2.根据权利要求1所述的提高污水深度处理产水率的方法,其特征在于步骤(3)中所 述的步骤(2)中的电吸附浓水经过保安过滤后再进行反渗透处理。
3.根据权利要求1所述的提高污水深度处理产水率的方法,其特征在于步骤(1)中所 述的过滤预处理是采用精度高于20微米的机械过滤或者精密过滤方式,去除污水中悬浮物, 经过预处理后的污水浊度应小于3NTU。
4.根据权利要求1所述的提高污水深度处理产水率的方法,其特征在于步骤(2)中所 述的电吸附工艺的模对电压为1.0V~1.8V,产水率控制在50%~75%。
5.根据权利要求1所述的提高污水深度处理产水率的方法,其特征在于步骤(3)中所 述反渗透处理产水率控制在50%~75%。
6.根据权利要求1所述的提高污水深度处理产水率的方法,其特征在于步骤(3)中所 述反渗透浓水的深度处理采用包括臭氧氧化、芬顿试剂氧化、二氧化氯氧化、次氯酸钠氧化、 电解催化氧化和紫外光催化氧化方法将其COD氧化到排放标准然后排放。
7.根据权利要求1所述的提高污水深度处理产水率的方法,其特征在于步骤(3)中所 述反渗透浓水的深度处理采用工业废热加热蒸发的方法将浓水中的无机盐全部蒸发结晶析 出,污水全部回收利用。
说明书
提高污水深度处理产水率的方法
技术领域
本发明涉及一种提高污水深度处理产水率的方法,属于污水深度处理方法领域。
背景技术
污水回用有2种方式,一种是简单处理后直接回用,例如采用过滤+杀菌的方法处理污水即可实现污水的回用,适用于水质比较好、无机盐含量比较低的污水回用,这种方法污水的回用率比较高,可达95%左右;另一种是对污水进行深度处理,既去除有机污染物又去除无机盐,适用于污染比较严重的污水回用。目前,污水深度处理有两种成熟的技术路线,一是多介质过滤+超滤+反渗透工艺,二是精密过滤+电吸附工艺。上述2种工艺均具有去除有机污染物和无机盐的能力。污水深度处理工艺水的回用率或者称之为产水率相对比较低,根据水质不同,产水率约50%~75%,剩余的25%~50%的水作为浓水排放,是对水资源的严重浪费,对于缺水地区或者行业来讲,如果能将污水尽可能地回收利用具有重要的经济价值和社会意义。
在现有技术中主要采用组合工艺获得高品质的回用水,例如专利号为CN101549934的专利是将膜生物反应器(MBR)与反渗透(RO)、电渗析(EDI)组合制工业超纯水。专利号为CN201317716的专利是将活性碳、多介质过滤、超滤、反渗透、电渗析进行组合制超纯水。专利号CN201305523、CN101085682、CN101085681、CN1253912所述专利与上述专利基本相似,以超滤+反渗透+电渗析工艺可以获得高品质的回用水,但是在水的处理过程中由于装置反洗等原因需要消耗一部分水导致水的利用率不会超过70%。
欧洲专利EP1431250将反渗透与电容法(电吸附)相结合,利用电容去离子装置处理反渗透的浓水,产水与原水混合作为反渗透的进水,以此提高产水率。电容法在欧美国家只是处于实验室研究阶段,没有实现工业化应用,而国内已经将电容法(国内称之为电吸附法)工业应用多年,应用规模达到20000万吨/日,根据多年研究及工业应用经验分析发现,该欧洲专利将反渗透置于电容法之前有3个明显缺点,第一缺点是反渗透对水中无机盐具有很高的浓缩倍数,通常可以浓缩4倍左右,如果所处理的水的电导率为2000μS/cm,此水质在实际应用中很常见,则反渗透的浓水的电导率即为8000μS/cm,再采用电容法处理此浓水只是理论上可行,而实际应用时没有应用价值,因为能耗会很高,产水率很低。如果所处理的水的电导率在4000μS/cm左右,则反渗透的浓水的电导率将近15000μS/cm,如果采用电容法处理浓水在实际应用中则根本不可能实现。第二个缺点是在污水回用工程中污水即使经过预处理仍有剩余溶解性的有机污染物,如果先采用反渗透处理,则有机污染物会对反渗透膜造成污染 使其脱盐功能下降,使用寿命缩短。第三个缺点是,该发明将反渗透置于电容法之前对来水水质有较高的要求,如果处理的是污水,即使是经过了生物处理达到了政府规定的排放标准,仍然需要严格的前处理深度去除颗粒物和有机污染物才能满足反渗透的进水要求,如此,处理流程会比较长,投资会增加,运行成本会比较高。因此,该欧洲专利在污水回用工程中不具有实际应用价值,本发明是基于解决现有技术的缺点并具有实际应用价值而提出来的。
发明内容
根据现有技术的不足,本发明要解决的技术问题是:提供一种提高污水深度处理产水率的方法,经过电吸附和反渗透两级浓缩,浓水量比较小,蒸发处理费用相应较低。
本发明解决其技术问题所采用的技术方案是:提供一种提高污水深度处理产水率的方法,其特征在于包括以下步骤:
(1)将达到排放标准的污水进行过滤预处理去除悬浮物;
(2)步骤(1)中的污水再进行电吸附处理,电吸附产生2股水,一股浓水,另一股清水排入产水池或者外供;
(3)步骤(2)中的电吸附浓水进行反渗透处理,反渗透处理后得到2股水,一股清水排入步骤(2)的产水池或者外供,另一股浓水进入反渗透浓水池,最后进行深度处理达标后排放。
步骤(3)中所述的步骤(2)中的电吸附浓水经过保安过滤后再进行反渗透处理。
步骤(1)中所述的过滤预处理是采用精度高于20微米的机械过滤或者精密过滤方式,去除污水中悬浮物,经过预处理后的污水浊度应小于3NTU。
步骤(2)中所述的电吸附工艺的模对电压为1.0V~1.8V,产水率控制在50%~75%。
步骤(3)中所述反渗透处理产水率控制在50%~75%。
步骤(3)中所述反渗透浓水的深度处理采用包括臭氧氧化、芬顿试剂氧化、二氧化氯氧化、次氯酸钠氧化、电解催化氧化和紫外光催化氧化方法将其COD氧化到排放标准然后排放。
步骤(3)中所述反渗透浓水的深度处理采用工业废热加热蒸发的方法将浓水中的无机盐全部蒸发结晶析出,污水全部回收利用。
拟回用污水一般都是经过处理的达到国家排放标准的外排污水,首先经过精密过滤去除机械杂质和浊度,确保浊度小于3NTU,然后进入电吸附装置除盐,同时,污水中的有机污染物(以COD表示)被部分去除。污水经过电吸附处理后得到2股水,一股是产水,进入产水池,水中的无机盐和COD均得到去除;一股是浓水,进入浓水池,无机盐得到浓缩,COD比原污水没有增加还略有降低或者相当。电吸附浓水经过保安过滤后进入反渗透装置,反渗透 处理后产生2股水,一股产水进入电吸附产水池与之混合均匀,作为污水回用系统的总产水外供用户;另一股是反渗透浓水,由于反渗透具有将无机盐和COD同时浓缩的特点,最后形成的反渗透的浓水COD将不能达标排放,可以采用行业内共知的高级氧化技术将COD处理达标后排放。如果是在内陆地区实施本发明,高浓度无机盐污水也不允许排放,即使将反渗透浓水COD处理达标了也不能将此浓水随意排放,则可以采取蒸发的方法将水中无机盐变成固体去除,以实现污水的零排放。
本发明的有益效果是:在污水回用领域,如果污水需要除悬浮物、除盐等深度处理措施,污水回用装置的产水率一般不会超过75%,而采用本发明所述的组合工艺处理达标污水比现有单一工艺或者组合工艺处理污水可以获得较高回收率,至少可以得到87%以上的回用率,可避免水资源的浪费,社会效益比较好。